In the name of God...

Application of Artificial Oocyte Activation in Assisted reproductive technology

M.H Nasr-Esfahani (PhD)

1. Department of Animal Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran.

2. Isfahan Fertility and Infertility Center, Isfahan, Iran.

Email: mh.nasr-esfahani@royaninstitute.org & nasr.royan@gmail.com

When is ICSI recommended, and for who?

- > There is low sperm count and/or poor sperm motility and/or poor abnormal morphology;
- > Previous IVF treatments resulted in none or very few fertilized eggs;
- Surgical sperm retrieval is required (due to a medical condition, vasectomy or an extremely low sperm count);
- > Embryo testing is being performed, such as Pre-Implantation Genetic Testing for Aneuploidy (PGT-A);
- > Frozen sperm is being used that may be of low quality.

Reported ICSI fertilization rates are between **70 and 80%**, usually about **10% higher** than that of conventional IVF methods. Unfortunately, TFF still occurs in ICSI cycles.

Total fertilization failure (TFF), which is the failure of fertilization in all oocytes, occurs in 5–10% of all cycles in Europe and the USA.

TFF after ICSI is **defined** as **the lack of male and female pronuclei formation**, a sign of fertilization, at the standard checking time of 17 ± 1 h post ICSI, in all oocytes retrieved during a cycle.

Sun B et al., 2021

TFF rates depend heavily on the number of mature (MII) oocytes available.

One retrospective study found a TFF rate of <u>2.14%</u> in cycles with 3 or more MII oocytes and a TFF rate of 17.4% in cycles with 1 or 2MII oocytes available.

Excluding cycles with diminished oocyte reserve, TFF rates wer found to be 1–5%.

These numbers represent averages. The actual number of a woman's egg supply will vary from woman to woman.

Among the TFF cases, roughly 10% were due to technical errors where sperm DNA lie outside of the oocyte.

> A majority of the cases point to **failed oocyte activation**.

Technical errors

Sun B et al., 2021

While the main etiology of TFF has been extensively reported as oocyte activation failure, mechanisms underlying oocyte activation failure have yet to be elucidated.

First: It is often unclear whether the defect comes from the sperm, the oocyte, or both.

Second: Proteins, organelles, and metabolic pathways of both gametes need to function properly in cascades of cellular events in a successful oocyte activation.

Mouse oocyte activation tests can exclude sperm deficiency. Yet, in cases of oocyte deficiency, it remains challenging to conclude on which level in the cascade there is a failure.

Third: Calcium oscillations in fertilized oocytes have been investigated in TFF cases because of their importance in oocyte development and activation leading up to successful fertilizations.

Sun B et al., 2021

Fertilization

Oocyte activation mechanism and its consequences

Generation of two types of calcium waves. Inositol triphosphate receptors (IP3Rs) and ryanodine receptors (RyRs) are two main receptors in cells that mediate the generation of Ca2+ waves.

a: IP3Rs initiate and maintain both spontaneous and Ca2+induced Ca2+ waves. Crosstalk between IP3Rs and RyRs shape the characteristics of Ca2+ waves.

a Blocking IP3Rs results in loss of high-amplitude, organized Ca2+ waves. Localized low-amplitude Ca2+ spikes were observed, likely mediated by RyRs. Processing of oocytes in assisted reproductive technology (ART) alters natural Ca2+ oscillatory patterns post fertilization. These alternations might be due to the speed at which sperm factors are released into oocytes, with the effects modified by different immobilization and injection techniques.

Different oscillation patterns have been observed in human in vitro fertilization (IVF) and ICSI protocols.
 Calcium oscillation patterns also differ significantly from species to species.
 Also, oocyte responses to such oscillations alter as a process of aging.

Whether differences in oscillation patterns hold clinical significance remains unclear.

The importance of calcium signaling in TFF can be seen in the development of various artificial oocyte activation (AOA) methods. These methods attempt to raise oocyte cytoplasmic calcium level to achieve a higher fertilization rate in cases of TFF where oocyte activation failure is suspected.

Natural activators: Phospholipase C-zeta (PLCζ)

Non-natural activators:

➤Ca+2 ionophore A23187 (calcimycin);

≻lonomycin

➤ Strontium chloride

AND electrical

Natural activator: Phospholipase C-zeta (PLCζ)

www.nature.com/scientificreports

SCIENTIFIC REPORTS

OPEN Sperm-borne phospholipase C zeta-1 ensures monospermic fertilization in mice

Received: 1 September 2017 Accepted: 3 January 2018 Published online: 22 January 2018

Kaori Nozawa^{1,2}, Yuhkoh Satouh¹, Takao Fujimoto^{1,3}, Asami Oji^{1,3} & Masahito Ikawa^{1,2,3,4} Sperm entry in mammalian oocytes triggers intracellular Ca²⁺ oscillations that initiate resumption of

These results suggest that mammalian spermatozoa have a primitive oocyte activation mechanism and that PLCζ1 is a SOAF that ensures oocyte activation steps for monospermic fertilization in mammals.

Conclusion: Although ICSI ensures monospermic fertilization, oocyte activation failures still occur and have been reported as a cause of unexplained infertility. As we observed polyspermy in Plcz1 mutant mice, such patients might have polyspermy in vivo as well as oocyte activation failure following ICSI. If it is caused by male infertility, this form could possibly be treated by a combination of ICSI and PLCζ1 complementation in vitro.

The establishment of appropriate methods for egg-activation by human PLCZ1 RNA injection into human oocyte

Authors: Takashi Yamaguchi, Masahiko Ito, Keiji Kuroda, Satoru Takeda, Atsushi Tanaka

PII: S0143-4160(16)30191-9 DOI: http://dx.doi.org/doi:10.1016/j.ceca.2017.03.002 Reference: YCECA 1839 To appear in: Cell Calcium Received date: 8-11-2016 Revised date: 3-3-2017 Accepted date: 3-3-2017

For the application of PLCZ1 to clinical use, the pattern of Ca2+ responses and developmental rate by comparing PLCZ1 RNA injection methods with the other current methods, such as cytosolic aspiration, electrical stimulation and ionomycin treatment in human oocytes.

I. The pattern of Ca2+ oscillations after PLCZ1 RNA injection exhibited similar characteristics to that after ICSI treatment.

II. Optimal concentration of human PLCZ1 RNA to activate the human oocytes was determined.

III. Human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.

Optimal concentration of human PLCZ1 RNA

Takashi Yamaguchi et al., 2017

Conclusion

Human PLCZ1 RNA is a better therapeutic agent to rescue human oocytes from failed activation, leading to normal and efficient development.

Hum. Reprod. Advance Access published September 6, 2011 Human Reproduction, Vol.0, No.0 pp. 1-7, 2011

doi:10.1093/humrep/der285

human reproduction **ORIGINAL ARTICLE Andrology**

Quantitative expression of phospholipase C zeta, as an index to assess fertilization potential of a semen sample

S. Aghajanpour^{1,2}, K. Ghaedi^{1,2}, A. Salamian¹, M.R. Deemeh^{1,3}, M. Tavalaee¹, J. Moshtaghian², J. Parrington⁴, and M.H. Nasr-Esfahani^{1,3,5,*}

ORIGINAL ARTICLE

Correspondence:

Mohammad H. Nasr-Esfahani, Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran. E-mail: mh.nasr-esfahani@royaninstitute.org

Keywords:

fertilization, globozoospermia, PAWP, PLCζ, pregnancy, TR-KIT

Received: 17-Sep-2015 Revised: 1-Feb-2016 Accepted: 3-Feb-2016

doi: 10.1111/andr.12179

Expression profile of *PLC*ζ, *PAWP*, and *TR-KIT* in association with fertilization potential, embryo development, and pregnancy outcomes in globozoospermic candidates for intra-cytoplasmic sperm injection and artificial oocyte activation

¹M. Tavalaee and ^{1,2}M. H. Nasr-Esfahani

¹Department of Reproductive Biotechnology, Reproductive Biomedicine Research Center, Royan Institute for Biotechnology, ACECR, Isfahan, Iran, and ²Isfahan Fertility and Infertility Center, Isfahan, Iran

	G1	G2	G3	G4	G5	G6	G7	G8	G9	G10	G11	G12
Male age (years)	28	36	35	36	32	37	44	23	26	35	35	35
Female age (years)	26	33	28	23	35	30	41	24	22	28	32	32
No. oocytes retrieved	4	13	12	23	30	13	3	12	8	7	8	10
No. MII oocytes	2	9	7	19	26	11	2	11	8	6	8	6
No. fertilized oocytes	2	8	6	14	16	6	1	5	3	2	2	1
Fertilization rate (%)	100	89	85.7	73.7	61.5	54.54	50	45.46	37.5	33.34	25	17
Cleavage rate (%)	100	62.5	100	50	18.7	66	100	40	66	100	100	100
No. embryos transferred	2	2	3	2	2	2	1	3	3	2	2	1
Clinical pregnancy	_	+	+	_	_	+	_	+	_	+	_	_
Sac number		1	1			2		1		2		
Implantation rate (%)	00	50 1 M	33.4 1 FM	00	00	100	00	33.4	00	100 2 FM	00	00
Abortion rate (%)		1 101				2 FM				21101		

Table 3 Characteristics of each globozoospermic cases and their ICSI-AOA clinical outcomes

M, Male; FM, Female; G, globozoospermia.

High fertilization (56.06%) and pregnancy (41.7%) rates accomplished in this study following ICSI-AOA indicated that expression profiles of PLCf and PAWP were low in globozoospermic individuals, and ICSI combined with artificial oocyte activation could mimic physiological calcium changes which occur during fertilization.

Title: Expression of sperm PLCζ and clinical outcomes of ICSI-AOA in men affected by globozoospermia due to DPY19L2 deletion.

Author: Marziyeh Tavalaee, Michail Nomikos, F. Anthony Lai, Mohammad Hossein Nasr-Esfahani.

PII: S1472-6483(17)30708-3 DOI: https://doi.org/10.1016/j.rbmo.2017.12.013 Reference: RBMO 1872 To appear in: Reproductive BioMedicine Online Received date: 24-6-2017 Revised date: 28-11-2017 Accepted date: 7-12-2017

The expression of PLCzeta at RNA and protein levels in globozoospermic men with DPY19L2 deletion was significantly lower compared with fertile men (n = 32).

Fertilization rate in globozoospermic couples following ICSI-AOA was significantly lower compared with fertile men (53.14% versus 87.64%, *P* < 0.001).

However, **implantation** (26.2%) and **pregnancy** (53.8%) rates were not jeopardized by DPY19L2 deletion in these couples.

Non-natural activator: ➤ Electrical

FERTILITY AND STERILITY® VOL. 72, NO. 3, SEPTEMBER 1999

Copyright ©1999 American Society for Reproductive Medicine Published by Elsevier Science Inc. Printed on acid-free paper in U.S.A.

REPRODUCTIVE BIOLOGY

Electrical activation and in vitro development of human oocytes that fail to fertilize after intracytoplasmic sperm injection Electric field induces micropores in gamete membranes that facilitate Ca2+ influx. One group found that single or multiple electrical pulse(s) was able to activate oocytes that showed no evidence of fertilization 16–24 h after ICSI.

In this study, human oocytes that displayed two pronuclei and extruded a second polar body within 16 h were considered to have fertilized normally.

> One electrical pulse fertilized oocyte at a rate of 70%;

> Three electrical pulses fertilized oocytes at a rate of 78%.

Despite the relatively high fertilization rate, however, only 11% of the oocytes fertilized with the assistance of three electrical pulses developed to early blastocyst stage.

The study did not analyze calcium transients induced by electrical pulses or correlate the difference in fertilization rate with corresponding calcium responses.

Chemical agents such as calcium ionophores are generally assumed to directly facilitate the transport of Ca2+ across the plasma membrane.

Activation agent	Ca ²⁺ response	Protocol	Oocyte activation rate	Rate to blastocyst	Study
Ionomycin	Single transients	10 μM for 10 min (2 exposures, 30-min interval); human sperm with low or complete failed fertilization	74.2%	N/A	[16]
Calcium ionophore A23187	Single transients	5% for 5 min followed by 2 mM 6-DMAP incubation Three-day-old oocytes that failed to activate after IVF/ICSI	75.4%	9.1%	[62]
SrCl ₂	Oscillatory signaling	10 mM for 20 min followed 2.5 mM 6-DMAP incubation Three-day-old oocytes that failed to activate after IVF/ICSI	46.8%	4.8%	
Ionomycin Calcimycin	Single transients	10 μM for 10 min (2 exposures, 30 min interval) + 0.1 mol/L CaCl ₂ ; human globozoospermic sperm ready to use for 15 min (1 exposure); human globozoozpermic sperm	30.0% 11.8%	N/A	[15]
Electric field	Single transients	1.36–1.50 kV/cm for 40–60 ms (1 pulse)	70%	8%	[63]
	Oscillatory signaling	1.36-1.50 kV/cm for 40-60 ms (3 pulses, 15-20-min interval)	78%	11%	
SrCl ₂	Oscillatory signaling	10 mM for 1 h (1 exposure); human sperm with low or complete failed fertilization	61.7%	25.7%	[64]

Table 2 Results of assisted oocyte activation (AOA) on human oocyte activation rate and rate to blastocyst formation

Meta analysis studies

Hum. Reprod. Advance Access published June 16, 2015

Human Reproduction, Vol.0, No.0 pp. 1-11, 2015

doi:10.1093/humrep/dev136

reproduction

human

META-ANALYSIS Embryology

Artificial oocyte activation to improve reproductive outcomes in women with previous fertilization failure: a systematic review and meta-analysis of RCTs

Ioannis A. Sfontouris¹, Carolina O. Nastri², Maria L.S. Lima², Eisa Tahmasbpourmarzouni³, Nick Raine-Fenning^{4,5}, and Wellington P. Martins^{2,*} There is insufficient evidence available from the currently available RCTs to judge the efficacy or safety of ICSI-AOA on key reproductive outcomes in couples with previous fertilization failure. Such interventions should be further examined by well-designed RCTs before the introduction of ICSI-AOA as a standard treatment.

ORIGINAL ARTICLES: ASSISTED REPRODUCTION

Does the use of calcium ionophore during artificial oocyte activation demonstrate an effect on pregnancy rate? A meta-analysis

Sughashini Murugesu, M.B.B.Chir.,^a Srdjan Saso, Ph.D., M.R.C.O.G., M.R.C.S.,^b Benjamin P. Jones, M.R.C.O.G.,^b Timothy Bracewell-Milnes, M.R.C.O.G.,^c Thanos Athanasiou, M.D., Ph.D., M.B.A., F.E.C.T.S., F.R.C.S.,^d Anastasia Mania, B.Sc., M.Sc., H.C.P.C.,^e Paul Serhal, M.D., M.R.C.O.G.,^e and Jara Ben-Nagi, M.D., M.B.B.S., M.R.C.O.G.^e

^a Department of Obstetrics and Gynaecology, Hillingdon Hospital, Uxbridge; ^b Division of Surgery and Cancer, Institute of Reproductive and Developmental Biology; ^c Department of Obstetrics and Gynaecology, Chelsea and Westminster Hospital; ^d Department of Cardiothoracic Surgery, National Heart and Lung Institute, Imperial College London; and ^e Centre for Reproductive and Genetic Health, London, United Kingdom We performed a standard meta-analysis to determine the value of calcium ionophore treatment as a method of AOA.

This meta-analysis included a total of **1,521 ICSI cycles spread over 14 studies**.

Focusing on the **primary outcomes**, calcium ionophore use after ICSI treatment significantly increases:

> Overall pregnancy rate per ET

> Live-birth rate per both ET and treatment cycle;

> Multiple pregnancy rate per ET.

Focusing on the **secondary outcomes**, calcium ionophore use after ICSI treatment significantly increases:

- Fertilization rate,
- Cleavage,
- Blastocyst formation,
- Implantation rate

A retrospective analysis of artificial oocyte activation in patients with low or no fertilisation in intracytoplasmic sperm injection cycles

Kevin K. W. Lam, Jacki Y. Y. Wong, Tak-Ming Cheung, Raymond H. W. Li, Ernest H. Y. Ng & William S. B. Yeung

To cite this article: Kevin K. W. Lam, Jacki Y. Y. Wong, Tak-Ming Cheung, Raymond H. W. Li, Ernest H. Y. Ng & William S. B. Yeung (2021): A retrospective analysis of artificial oocyte activation in patients with low or no fertilisation in intracytoplasmic sperm injection cycles, Journal of Obstetrics and Gynaecology, DOI: <u>10.1080/01443615.2021.1922878</u>

To link to this article: https://doi.org/10.1080/01443615.2021.1922878

Infertile couples with severe male infertility, poor fertilization

	AOA group	Non-AOA group	
	(n = 34)	(n = 34)	p Value
Female age (years) ^a	36.4 ± 3.3	36.1 ± 3.7	NS
Number of oocytes per retrieval ^a	10.2 ± 4.9	7.7 ± 4.0	.030
Number of metaphase II oocyte injected per cycle ^a	7.8 ± 4.1	5.7±3.6	.026
Total metaphase II oocyte number	265	188	-
Total normally fertilised oocytes number	138	26	-
Number of normally fertilised oocytes per cycle ^a	4.1 ± 2.8	0.8±1.0	<.001
Normal fertilisation rate (%) ^b	52.1%	13.8%	<.001
Total number of failed fertilisation	4 (11.8%) /	17 (50%) /	<.001
cycles (%) ^c / number of oocytes injected for these cycles (median ± standard deviation)	3.5 ± 1.3 oocytes injected	3.7 ± 2.2 oocytes injected	
Total cleaved embryos number (%)	136 (98.6%)	25 (96.1%)	NS
Total usable embryos number (%)	98 (72.1%)	22 (88.8%)	NS
Total top quality embryos number (%)	28 (20.6%)	4 (16.0%)	NS
Number of fresh embryo transfer	17	8	-
Number of clinical pregnancy per transfer (%)	5 (29.4%)	1 (12.5%)	NS
Number of clinical pregnancy from subsequent FET cycles	11	0	-
Cumulative clinical pregnancy rate ^c	47.1%	2.9%	<.001
Number of live births	10	1	_
Cumulative live birth rate ^c	29.4%	2.9%	.003

Table 1. Laboratory and clinical data of AOA and non-AOA cycles.

^aData expressed as mean ± standard deviation.

^bPer injected oocytes.

^cPer oocyte retrieval cycle.

NS: not significant; FET: frozen thawed embryo transfer.

Bold values denote statistical significance at the p < .05.

4 🕳 K. K. W. LAM ET AL.

	A23187 group	A23187 + calcium chloride co-treatment group	
	(n = 9)	(n = 25)	p Value
Female age (years) ^a	38.6±0.6	35.7±0.7	.021
Number of oocytes per retrieval ^a	7.8 ± 4.4	11.1 ± 4.9	NS
Number of metaphase II oocyte injected per cycle ^a	6.1 ± 3.5	8.4 ± 4.2	NS
Total metaphase II oocyte number	55	210	-
Total normally fertilised oocytes number	29	109	-
Normally fertilised oocytes (%) ^b	52.7%	51.9%	NS
Total number of failed fertilisation cycles (%) ^c	2 (22.2%)	2 (8.0 %)	NS
Total cleaved embryos number (%)	29 (100%)	107 (98.2%)	NS
Total usable embryos number (%)	22 (75.9%)	76 (71.0%)	NS
Total top quality embryos number (%)	3 (10.3%)	25 (23.4%)	NS
Number of fresh embryo transfer cycles	5	12	-
Number of clinical pregnancies per embryo transfer (%)	2 (40%)	3 (25%)	NS
Cumulative clinical pregnancy rate (%) ^c	44.4%	40.0%	NS

Table 2. Laboratory and clinical data of AOA cycles using A23187 only and concomitant injection of calcium chloride.

^aData expressed as mean ± standard deviation.

^bPer injected oocytes.

^cPer oocyte retrieval cycle.

NS: not significant.

Cases	Gender	Birth weight (g)	Gestation week (weeks + days)	Congenital abnormalities (yes/no)
Patient 1	F (Twins)	2290	33+6	No
	F (Twins)	2290	33+6	No
Patient 2	Μ	2300	37	No
Patient 3	Μ	3110	38 + 2	No
Patient 4	M (Twins)	2345	37 + 3	No
	F (Twins)	2020	37 + 3	No
Patient 5	Μ	3010	39	No
Patient 6	Miscarriage	/	/	/
Patient 7	Miscarriage	/	/	/
Patient 7	М	3500	40	No
Patient 8	Miscarriage	/	/	/
Patient 9	Miscarriage	/	/	/
Patient 10	Miscarriage	/	/	/
Patient 10	F	3000	39	No
Patient 11	Miscarriage	/	/	/
Patient 12	F	2550	38 + 3	No
Patient 13	F	2800	39 + 4	No
Patient 14	Μ	3380	39	No

Table 3. Obstetrics data of the pregnant patients in the AOA group.

Journal of Assisted Reproduction and Genetics https://doi.org/10.1007/s10815-021-02338-3

EMBRYO BIOLOGY

Ionophore application for artificial oocyte activation and its potential effect on morphokinetics: a sibling oocyte study

 $Omar Shebl^{1} \cdot Philip Sebastian Trautner^{1} \cdot Sabine Enengl^{1} \cdot Elisabeth Reiter^{1} \cdot Christina Allerstorfer^{1} \cdot Tamara Rechberger^{1} \cdot Peter Oppelt^{1} \cdot Thomas Ebner^{1}$

Received: 21 July 2021 / Accepted: 1 October 2021 © The Author(s) 2021 One of the new technologies in the field of medically assisted reproduction from the last decade is timelapse technology (TLT).

First, time-lapse incubators guarantee the safest and most stable embryo culture environment available by simply avoiding extensive exposure outside the incubator.

Second, continued embryo monitoring that allows for a 24-h surveillance of the oocytes, zygotes, and embryos facilitates the detection or further investigation of previously unknown phenomena in preimplantation development.

The good practice recommendation paper for the use of TLT by the ESHRE working group on time-lapse technology further highlighted that TLT allows for a more flexible and better management of a laboratory workload.

Finally, TLT is an important tool within the framework of existing quality management systems. In fact, it may be used o train embryologists and assess intra- and inter-operator variability with respect to the annotation of morphokinetic parameters.

More importantly, TLT can also be used to identify and monitor in vitro stress that may arise from suboptimal culture conditions. In particular, a large number of consumables or new culture media for testing could interfere with anticipated cleavage timings.

Although subtle changes may have no clinical consequences larger deviations in morphokinetic behavior may reflect severe physiological problems.

Purpose To evaluate whether ionophore application at the oocyte stage changes the morphokinetics of the associated embryos in cases of artificial oocyte activation.

Methods In a prospective sibling oocyte approach, **78 ICSI patients** with suspected fertilization problems had **half of their MII-oocytes** treated with a **ready-to-use ionophore** (calcimycin) immediately following ICSI (study group). Untreated ICSI eggs served as the control group. Primary analyses focused on morphokinetic behavior and the presence of irregular cleavages. The rates of fertilization, utilization, pregnancy, and live birth rate were also evaluated.

Results Ionophore-treated oocytes showed a significantly earlier formation of pronuclei (t2PNa) and a better synchronized third cell cycle (s3) (P < .05). The rate of irregular cleavage was unaffected (P > .05). Ionophore treatment significantly improved the overall rates of fertilization (P < .01) and blastocyst utilization (P < .05).

Conclusion Ionophore application does not negatively affect cleavage timing nor is it associated with irregular cleavage.

Author Manuscript

Reprod Biomed Online. Author manuscript; available in PMC 2012 August 1.

Published in final edited form as:

Reprod Biomed Online. 2011 August ; 23(2): 234-244. doi:10.1016/j.rbmo.2011.04.007.

Methodology matters: IVF versus ICSI and embryonic gene expression

Phillip J. Bridges^a, Myoungkun Jeoung^a, Heyoung Kim^a, Jung Ho Kim^b, Dong Ryul Lee^b, CheMyong Ko^{a,c}, and Doris J. Baker^{a,c}

^aDivision of Clinical and Reproductive Sciences, University of Kentucky, Lexington KY 40536

^bFertility Center of CHA Gangnam Medical Center, CHA University 135–080, Seoul, Korea

In blastocysts derived by:

- > ICSI versus IVF: the expression of 197 genes differed (P < 0.01).
- > ICSI-A versus IVF: the expression of 132 differed (P < 0.01).
- ICSI-A versus ICSI: the expression of 65 genes differed (P < 0.01).</p>

Technique	Fertilized oocytes cultured	2-cell embryos	Blastocysts
IVF	108	101 (93.52)	79 (78.22)
ICSI	130	111 (85.38)	57 (51.35)
ICSI-A	80	74 (92.50)	40 (54.05)

Data are the sum results from four independent experiments. Values are n or n (%).

Reproductive BioMedicine Online (2015) 30, 323-324

EDITORIAL

A plea for caution and more research in the 'experimental' use of ionophores in ICSI

Jonathan van Blerkom, Jacques Cohen, Martin Johnson

Long et al. Reproductive Biology and Endocrinology https://doi.org/10.1186/s12958-020-00680-2

(2020) 18:123

Reproductive Biology and Endocrinology

REVIEW

Risk of birth defects in children conceived by artificial oocyte activation and intracytoplasmic sperm injection: a metaanalysis

Open Access

Rui Long, Meng Wang, Qi Yu Yang, Shi Qiao Hu, Li Xia Zhu^{*} and Lei Jin^{*}

Five studies were included in the final analysis. Compared with conventional ICSI, ICSI-AOA did not increase the birth defects rate (RR = 1.27, 95%CI 0.70–2.28) of children.

Author(s)	Location	Study design	Time-	Length	Included	Methods	Conventiona	I-ICSI	ICSI-AOA		
year			period	of follow- up	study population	of oocyte activation	No. of children (singletons/ multiples) ^a	Children with birth defects	No. of children (singletons/ multiples) ^a	Children with birth defects	
Deemeh (2015) [18]	Iran	Historical cohort study	2008– 2010	1–30 months	Live births	ionomycin	89 (67/22)	2 (2.2%)	79 (68/2019)	0 (0%)	
Nakajo (2016) [16]	Japan	Retrospective cohort study	1995– 2014	6 years	Live births	Ca ²⁺ ionophore/ SrCl ₂	1978 (1640/ 338)	75 (3.8%)	62 (51/11)	2 (3.2%)	
Miller (2016) [15]	Israel	Retrospective cohort study	2006– 2014	Birth	Live births and TOP	Ca ²⁺ ionophore	426 (315/ 111)	26 (6.1%)	62 (51/11)	6 (9.7%)	
Li B (2019) [17]	China	Retrospective cohort study	2011– 2016	Birth	Live births	ionomycin	2442 (1504/ 938)	31 (1.3%)	95 (59/36)	2 (2.1%)	
Kobayashi (2013) [28]	Japan	Retrospective cohort study	2006– 2012	Not known	Live births	ionomycin	571 (Not known)	8 (1.4%)	18 (Not known)	1 (5.5%)	
Total							5506	142 (2.6%)	316	11 (3.5%)	

Table 1 Characteristics of included studies of birth defects in babies from conventional ICSI and ICSI-AOA pregnancies

ICSI intracytoplasmic sperm injection, *AOA* artificial oocyte activation, *TOP* terminal of pregnancy ^aMultiples including twins and triplets

Long et al. Reproductive Biology and Endocrinology (2020) 18:123

Page 5 of 9

Table 2 Number of birth defects in specific organ system from included studies

Author(s)	Specific organ system	Circulatory system	Genitourinary system	Musculoskeletal system	Digestive system	Nervous system	Face	Beckwith- Weidemann syndrome	Poland syndrome
Deemeh	AOA	0	0	0	0	0	0	0	0
[18]	ICSI	1	0	1	0	0	0	0	0
Miller [15]	AOA ^a	4	2	2	0	0	0	1	0
	ICSI ^b	8	5	3	2	3	1	0	0
Li B [17]	AOA	2	0	0	0	0	0	0	0
	ICSI	20	1	3	0	0	3	0	1

ICSI intracytoplasmic sperm injection, AOA artificial oocyte activation

^aIn the AOA group, one case with several structural defects (dysplastic kidney, reflux, ventricular septal defect) and another case with ventricular septal defect,

interrupted inferior vena cava and short thumb with low insertion of right hand

^bIn the ICSI group, one case with both hypospadias and ventricular septal defect

Furthermore, in a subgroup analysis, birth defects were classified into two types (chromosomal aberrations and non-chromosomal aberrations) in four studies and no statistical difference were revealed.

Author(s)	Total numb	er of children	Non-chromo	somal aberrations	Chromosomal aberrations		
	ICSI	AOA	ICSI	AOA	ICSI	AOA	
Deemeh [18]	89	79	2	0	0	0	
Nakajo [16]	1978	62	67	1	8	1	
Miller [15]	426	62	19	6	7	0	
Li B [17]	2442	95	30	2	1	0	

Table 3 Number of children with types of birth defects from included studies

ICSI intracytoplasmic sperm injection, AOA artificial oocyte activation

Journal Pre-proof

Artificial oocyte activation to improve reproductive outcomes in couples with various reproductive problems: a retrospective cohort study

Mingrong Lv, Dan Zhang, Xiaojin He, Beili Chen, Qiang Li, Ding Ding, Yan Hao, Rufeng Xue, Dongmei Ji, Weiwei Zou, Huijuan Zou, Yajing Liu, Jianye Wang, Zhaolian Wei, Ping Zhou, Yunxia Cao, Zhiguo Zhang

 PII:
 S1472-6483(20)30001-8

 DOI:
 https://doi.org/10.1016/j.rbmo.2020.01.001

 Reference:
 RBMO 2324

- ➤ 1261 ICSI cycles and 796 ICSI-artificial oocyte activation (ICSI-AOA) cycles.
- > The rates of implantation, positive β -hCG, clinical pregnancy, and live birth were significantly improved compared with the previous cycles.
- Additionally, compared with previous cycles, the rates of blastulation and high-quality blastocysts were increased significantly for couples with male factors, young patients with chronic salpingitis, and infertile couples with both factors in the ICSI-AOA cycles.
- The miscarriage rate was decreased significantly for the couples with male factors, young patients with chronic salpingitis, and patients with polycystic ovary syndrome (PCOS) in the treatment cycles. However, no significant differences were found for fertilization rate, embryo development, or outcomes in patients with primary ovarian insufficiency between the ICSI and ICSIAOA groups.

Conclusions AOA was able to "rescue" the poor reproductive outcomes in certain types of infertile couples with history of failure pregnancy.

Conclusion: This conclusion may provide clinicians evidence-based support in patient counseling and instruction of the application and safety concern about ICSI-AOA.

