





 1.Introduction

= Qver the past few decades, researchers have made remarkable progress in developing
accessible and informative -models

Model Systems

In Vitro Animal Humans
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> The reasons for limitations of animals model:

v ethical concerns

= More than 110 million animals, including mice, rats, birds, fish, pigs, cats, and
rabbits, are killed annually in U.S. laboratories for various purposes such as medical
research, training, and
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TR BGRERERERE compared to humans:

1. Variations in drug-metabolizing enzyme activity among species [
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2. When a model seems to accurately represent a disease, variations in finer details such as cellular
receptors and immune signaling pathways can adversely affect the assessment of potential
therapies
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d In Vitro-2D -~~~

Epithelial Endothelial Fibroblast-like

* Sguamous, columnar * Rounded outline * Spindle-shaped
or cuboidal-shaped + Elongated + Elongated

Lymphaoblast-like Neuronal

l » Spherical-shaped * Round, pyramidal,
* Cells range in size or spindle-shaped




 Steps of primary cell culture

Tissues Cell suspension Adherent cells
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4 Applications of 2D Cell Culture

effects of chemicals and biosafety of them . .
cell growth and proliferation
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Jd Limitation of 2D cell culture
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» The flat, two-dimensional surface is one of the most striking
differences between 2D cell culture and the in vivo environment
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» The absence of mechanical signals is another limitation

» Gene and protein expression patterns in 2D cultured cells often differ
from those in native tissues



1 Emergence of 3D cell culture
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1 Emergence of 3D cell culture

v Cell interactions

2D Culture 3D Culture

Cell-to-medium
contact surface

contact surface contact surface /

Cell-to-scaffold
contact surface
Cell-to-cell
contact surface

Cell-to-container
contact surface
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1 Emergence of 3D cell culture
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1 Emergence of 3D cell culture

» Morphology
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. Source of cells used in 3D culture

*Highly pluripotent, able to
differentiate into any cell
type

*Subject to ethical debates
due to their source

*Adult stem cells derived
from fat tissue

«Can differentiate — Adipose-derived Stem

into connective tissue cel
such as bone, cartilage
and fat.

— Embryonic Stem
Cells
(ESCs)
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human embryos
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. Source of cells used in 3D culture

» personalization
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d 3D co-cultures with Extra Cellular Matrix(ECM)

» 3D co-cultures involve growing two or more different cell types together in a three-
dimensional environment, often integrated with ECM components

Gel SC8ffO|d(EC|V|) Gel scaffold(ECI\/I) 17



d Application of 3D co-cultu
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d Applications of 3D Co-Cultures with ECM In
diabetes

1. Modeling Pancreatic Function

2. Drug Discovery

*

Stem Cell Transplantation

The extracellular matrix (ECM) is the scaffolding in which cells are located and provides them with the
structure and signals they need for proper growth and function.

S

v In the field of diabetes treatment, scientists have realized that using ECM, insulin-producing cells can be
cultured in an environment similar to the natural environment of the pancreas, and then these cells can
be transplanted into the body of diabetic patients.

19



d Applications of 3D Co-Cultures with ECM In
diabetes
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d Applications of 3D Co-Cultures with ECM In
diabetes

1-Year Follow-Up

» A groundbreaking case involved a 25-year-
old woman in Tianjin who began producing
her own insulin less than three months after
receiving a transplant of reprogrammed
stem cells derived from her own

Insulin independence from 75 days
post-transplantation

Durys post Yarmglartation

body(Wang et al., 2024).

= This approach utilized chemically induced
pluripotent stem (iPS) cells to create 3D
clusters of pancreatic islets, which were then
transplanted into her abdominal muscles.

A woman with type 1diabetes started producing insulin (blue) after PP EP PP

» The results have been remarkable, with the
patient achieving insulin independence for
over a year

Pescantage (%)
» ®» P
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4 Applications of 3D Co-Cultures with ECM In MS

Suitable cell lines for modeling MS disease in 3D culture:

1. Nerve cells

Primary neurons: These cells are isolated from the central nervous system of animals and can be used to study the direct effects of pathogens
on neurons.

Neuronal cell lines: Cell lines such as SH-SY5Y and PC12 are widely used in neuroresearch. These cell lines are derived from neural tumors and
although they retain some characteristics of normal neurons, they may have lost some important functions.

2.glial cells

Oligodendrocytes: These cells are responsible for producing myelin, which is a protective covering around nerve axons. In MS,
oligodendrocytes are destroyed, causing loss of myelin and impaired nerve transmission.

Astrocytes: These cells play an important role in supporting neurons and regulating their environment. In MS, astrocytes are activated and can
contribute to the destruction of myelin.

Microglia: These cells are the innate immune system of the central nervous system and are activated in response to injury or infection. In MS,
microglia are overactivated and can contribute to the destruction of myelin and neurons.

3.Immune cells

T cells: Autoimmune T cells in MS attack myelin, causing inflammation and destruction.
B cells: B cells produce antibodies that can attack myelin.
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d Applications of 3D Co-Cultures with ECM In MS

Autologous transplantation

Skin Biopsy in the CNS

-

In vitro culture of fibroblast
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Reprogramming iPSC Neural precursor cell 2 3




4 Applications of 3D Co-Cultures with ECM In MS

Promising research results:

Development of neural scaffolds: Researchers are developing
neural scaffolds derived from the extracellular matrix that can
serve as a scaffold for the growth and repair of damaged nerve
cells in MS patients.

Stem cell transplantation: Using 3D culture, stem cells can be
differentiated into nerve cells and then transplanted to the site
of damage in the brain(Yoon et al., 2021)(Vagaska et al., 2020).

Stimulation of myelination: Some studies show that 3D culture
of myelin-forming cells (oligodendrocytes) can help stimulate
remyelination and improve nerve function(Marangon et al.,
2021).
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 relationship between 3D culture and Micro-physiological
systems (MPS)

3D Cell Models
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Spheroid 3D Co-Culture
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 relationship between 3D culture and Micro-physiological systems
(MPS)

3D co-cultures with extracellular matrix(Hydrogel) : These . .~
systems involve culturing cells together with extracellular
matrix components to create a more physiologically relevant
environment

Organoids: Organoids are 3D cell cultures derived from stem ’B\

cells that can self-organize into structures resembling specific
0

*3D bio-printed tissues: Bio
creation of customized 3D tiss
over cell arrangemen

*Organ-on-a-chip systems: These systems mimic specific
organs, such as the liver, lung, or gut, and are designed to study
organ-specific functions and diseases

Mechanical
stimulation




 relationship between 3D culture and Micro-physiological

systems (MPS)

2D 3D microphysiological
) organoids ) systems (MPS)

« cells |
.« culture media, = multiple cell types ,
dishes, plates, wells = cell-cell interactions » organoid technology
» extracellular adhesive - extracellular proteins » microfabrication of
proteins _ dedicated compartments
= cell-induced extracellular _ o _
remodeling » microfluidic circulation
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1987 D.M. Bissell et al.; Li et al.

Demonstration of the functional use of laminin-rich gels
to support hepatocellular function or mammary gene
expression.

1991 Streuli et al.
Integrins regulate gene expression

ECM

2006 Nelson et al.

Micropattern gels provide positional cues that establish
the range of action of TGF-f in morphogenesis vs
invasion

2009 Sato et al.
“Mini-guts”: a culture system allows growth of epithelial
organoids from a single Lgr5-positive stem cell

—b@
S P

Gut fragments

2013 Lancaster et al.
Human brain organoids are generated from iPSCs
derived from cells from a patient with microcephaly.

-

Skin fibroblasts from  iPSC Cerebral
Healthy or patient donor organoids

O

O

 The historical development of microphysiological systems

1989 Barcellos-Hoff et al. 1992 Petersen et al.

Use of a laminin-rich matrix to develop assays of
mammary morphogenesis and to distinguish between
healthy and malignant human epithelial cells.

I

o

Mammary epithelial cells Breast cancer cells

2001 Simian et al.

Use of 3D collagen cultures
to study the mechanisms of
mammary gland branching
morphogenesis

2008 Eiraku et al.

Self-organized formation of polarized cortical tissues
from ESCs using 3D aggregation cultures

S
—»§

S50

Cortical tissues

2012 Nakano et al.
Formation of a

self-organized optic
cup structure from
human ESCs in 2

3D culture

28



 Replacing animal testing with modern technology

= the term “preclinical tests (including tests on animals)” ‘ “nonclinical tests

Cell assay(2Dcell

culture) Micro-physiological system(MPS)

3-D ORGANOIDS

MICROPHYSIOLOGICAL
SYSTEMS (MPS)

The emergence of 3D cell culture and the advent of micro-
physiological systems



 Replacing animal testing with modern technology
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