Course plan

Year: 2024-2025	Semester: First Second	Number of students:	
Major: Doctor of Dentistry	Basic sciences Physiopathology	Department: Physiology	
Course Title: Physiology 2 Dentistry	Theoretical Practical	Course N. & Credit: 244142, 2	
Prerequisite: Cell Physiology	Day & Time: Sunday, 8-10 A.M.	Place: Shahid Soleimani Building	
Course Coordinator: Prof. Parham Reisi	Office address: School of Medicine, Department of physiology	Tel: 031-3792 9033	
Email: p_reisi@med.mui.ac.ir	Response Hours and Days: 12-14 every day	Student representative name and mobile number:	

Main objective: The main goal of this course is to familiarize dental students with the principles of the nervous system, endocrine glands, kidneys, and their relationship to oral and dental health for clinical application.

Specific objects:

Neurophysiology

- 1. Familiarity with the structure and function of the central and peripheral nervous systems. (Cognitive domain)
- 2. Understanding the electrical and synaptic mechanisms in neurons. (Cognitive domain)
- 3. Identification of sensory receptors, sensory pathways, and the thalamus. (Cognitive domain)
- 4. Study of pain mechanisms and pain inhibition systems. (Cognitive domain)
- 5. Understanding the physiology of spinal cord and spinal reflexes. (Cognitive domain)
- 6. Familiarity with the motor system and mechanisms of balance maintenance. (Cognitive domain)
- 7. Study of the limbic system, memory, and sleep. (Cognitive domain)
- 8. Understanding the function of the autonomic nervous system and its role in regulating body organs. (Cognitive domain)

Endocrine and Reproductive Physiology

- 9. Familiarity with endocrine glands and the role of pituitary hormones. (Cognitive domain)
- 10. Understanding the function of the thyroid gland and adrenal cortex, and their effects on oral health. (Cognitive domain)
- 11. Study of the role of insulin and glucagon in diabetes and related oral diseases. (Cognitive domain)
- 12. Understanding calcium and vitamin D metabolism in bone and dental health. (Cognitive domain)

Renal and Urinary System Physiology

- 13. Familiarity with filtration, reabsorption, and tubular secretion processes in the kidneys. (Cognitive domain)
- 14. Study of urine concentration and dilution mechanisms, and osmolality regulation. (Cognitive domain)

References (Text books):

- 1- Guyton and Hall Textbook of Medical Physiology (Latest Edition) and Ganong's Review of Medical Physiology (Latest Edition).
- 2- Berne & Levy Physiology (Latest Version)
- 3- Class Slides and Contents

Student evaluation and the value related to each evaluation:

(The assessment tools employed to evaluate students' comprehension of course content and their attainment of the skills and competencies outlined in the learning outcomes.). The midterm exam covers the nervous system (9.5 points), while the final exam covers the endocrine system (6 points) and the urinary system (4.5 points).

ASSESSMENT TOOLS	From
Mid-term	9.5
Final	10.5
TOTAL MARKS	20

Students' responsibilities:

- 1- Prepare for class by reviewing topics beforehand and afterwards.
- 2- Adhere to class order and rules.
- 3- Ensure attendance in all classes.

Discipline and educational rules:

1. Attendance Policy:

• A deduction of 0.5 points from a total of 20 points will be applied for each unplanned absence. If the number of absences exceeds the permissible limit, the overall score for the course will be reduced to zero.

2. Punctuality:

• Participants are allowed a maximum grace period of 5 minutes after the scheduled start time to join the class. Beyond this timeframe, latecomers may not be admitted.

3. Mobile Phone Usage:

• The use of mobile phones is strictly prohibited during class. Participants are expected to keep their phones on silent or vibrate mode and refrain from any phone-related activities to maintain a focused learning environment.

Other important notes for students:

Reading the guidelines and rights governing both professors and students.

Note: In each class session, a quiz may be taken or questions asked.

Mid exam date: In accordance with the schedule

Final exam date: In accordance with the schedule

Row	date	Presentation	Topic	Professor	Theoretical	References	Chapter
					or practical		
1	2025/Feb/2	In-person	Introduction to the Structure of the Nervous System and the Principles of Neuronal Function and Electrical Events. Objectives: Introduction to the overall structure of the central	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	46-47
			and peripheral nervous systems. Understanding functional levels of the nervous system (spinal cord, brainstem, cerebellum, cerebral cortex). Introduction to				
			synapses (chemical and electrical) and types of neurotransmitters. Understanding electrical and ionic events during neuronal excitation or inhibition.				
			Concepts of spatial and temporal summation, neuronal facilitation, and synaptic conduction. The role of dendrites in neuron excitation and mechanisms for terminating mediator activity.				

2	Feb/9	In-person	Sensory Receptors and Somatic Sensations Objectives: Understanding different types of sensory receptors and the mechanism of converting stimuli into neural signals. Introduction to somatic senses (touch, pressure, vibration, pain, temperature). Examination of sensory signal transmission pathways and the role of the thalamus in processing them.	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	47-48
3	Feb/16	In-person	Pain Mechanisms and Related Clinical Disorders Objectives: Continuation of somatic sensation topics. Physiological mechanisms of pain, its types, and pain receptors. Pathways for pain transmission and pain suppression systems. Analysis of referred pain, visceral pain, and mechanisms of clinical disorders related to pain.	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	48-49
4	Feb/23	In-person	Spinal Motor Physiology and Reflexes Objectives: Introduction to muscle spindles and their role in the muscle stretch reflex. Analysis of the role of Golgi tendon organs in movement control. Examination of spinal reflexes and the phenomenon of spinal shock.	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	55
5	Mar/2	In-person	Brainstem, Motor Cortex, and Balance Objectives: Examination of the role of the brainstem in controlling involuntary movements. Understanding the role of the motor cortex in voluntary movements and the cortical-spinal pathway. Introduction to the vestibular system and its role in balance. Analysis of vestibular reflexes related to balance and their connections with the brainstem and cortex.	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	56
6	Mar/9	In-person	Cerebellum and Basal Ganglia Objectives: Exploration of the cerebellum's role in movement coordination and balance regulation. Understanding cerebellar function in motor learning and regulation of complex movements. Analysis of basal ganglia function in movement planning and execution. The relationship between basal ganglia, cortex, and cerebellum in movement regulation.	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	57
7	Mar/16	In-person	Limbic System and Memory Objectives: Exploration of the role of the limbic system in regulating emotions and behavior. Understanding the	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and	58-60

			mechanisms of memory and			Hall)	
			learning. Analysis of brainwaves and different stages of sleep.				
8	Apr/6	In-person	Autonomic Nervous System (ANS) Objectives: Understanding the organization of the sympathetic and parasympathetic systems. Analysis of the effects of the autonomic nervous system on various organs of the body. Understanding autonomic tone and drugs affecting its function. Summary and review of key points from previous sessions.	Prof. Reisi	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	61
9	Apr/13	In-person	Introduction to Endocrine Glands and Pituitary Hormones Objectives: Introduction to endocrine glands and their overall role in body regulation. Understanding anterior and posterior pituitary hormones and their control by the hypothalamus. Examining the role of growth hormone (GH) and related disorders like acromegaly and dwarfism.	Prof. Soltani	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	75-76
10	Apr/20	In-person	Thyroid Hormones Objectives: Examination of the structure and function of the thyroid gland. Understanding the role of T3 and T4 hormones in regulating basal metabolism and growth. Exploring thyroid gland disorders (e.g., hypothyroidism and hyperthyroidism) and their effects on oral and bone health. Analyzing the relationship between thyroid hormones and osteoporosis.	Prof. Soltani	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	77
11	Apr/27	In-person	Adrenal Cortex Hormones Objectives: Introduction to the structure and function of the adrenal cortex. Understanding the role of cortisol in stress response and metabolism of proteins, fats, and carbohydrates. Analyzing the role of aldosterone in regulating electrolyte balance and body fluids. Exploring disorders of the adrenal cortex (e.g., Addison's disease and Cushing's syndrome) and their effects on oral health and related diseases.	Prof. Soltani	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	78
12	May/4	In-person	Insulin, Glucagon, and Diabetes Objectives: Understanding the role of insulin and glucagon in glucose metabolism regulation. Examining the pathophysiology of Type 1 and Type 2 diabetes. The impact of diabetes on oral	Prof. Soltani	Theoretical	Textbook of Medical Physiology (Guyton and Hall)	79

		I	hoolth including own disass-				
			health, including gum disease, dry mouth, and wound healing.				
			The role of blood sugar control				
			in preventing oral complications				
			of diabetes.				
13	May/11	In-person	Calcium and Phosphate	Prof.	Theoretical	Textbook of	80
	· ·	_	Metabolism, Vitamin D,	Soltani		Medical	
			Bones, and Teeth			Physiology	
			Objectives: Examining the role of parathyroid hormone and			(Guyton and	
			calcitonin in calcium and			Hall)	
			phosphate metabolism.			11411)	
			Understanding the role of				
			vitamin D in bone and dental				
			health. Exploring the				
			relationship between calcium				
			and vitamin D deficiencies with bone diseases (e.g., rickets and				
			osteoporosis) and their impact				
			on teeth. Calcium and				
			phosphate metabolism during				
			infant breastfeeding.				
14	May/18	In-person	Introduction to Renal	Prof.	Theoretical	Textbook of	26-27
			Anatomy and Renal Processes Objectives: Familiarization	Nasimi		Medical	
			with the structure of the			Physiology	
			kidneys, nephrons, and the			(Guyton and	
			urinary collection system and			Hall)	
			renal processes. Understanding			. ,	
			the mechanism of glomerular				
			filtration and the regulatory				
15	May/25	In norson	factors involved. Tubular Reabsorption and	Prof.	Theoretical	Textbook of	28
13	Way/23	In-person	Secretion Processes		Theoretical		26
			Objectives: Investigating the	Nasimi		Medical	
			processes of reabsorption of			Physiology	
			essential substances and			(Guyton and	
			secretion of waste products in			Hall)	
			the nephrons. Understanding the role of the renin-				
			angiotensin-aldosterone system				
			in regulating kidney function.				
16	Jun/1	In-person	Urine Concentration and	Prof.	Theoretical	Textbook of	28-29
			Dilution	Nasimi		Medical	
			Objectives: Assessing kidney			Physiology	
			function. Understanding the mechanism of urine			(Guyton and	
			concentration and dilution and			Hall)	
			the role of the loop of Henle.			11411)	
17	Jun/8	In-person	Osmolarity Regulation and	Prof.	Theoretical	Textbook of	29-30
		_	Blood Volume Control	Nasimi		Medical	
			Objectives: Familiarization with the regulation of			Physiology	
			osmolarity and sodium			(Guyton and	
			concentration by the antidiuretic			Hall)	
			hormone (ADH). Blood volume			11411)	
			control. Investigating the renal				
			regulation of potassium,				
			calcium, phosphate, and				
			magnesium and their significance in maintaining				
			body homeostasis.				
		l	oody nomeostasis.		I.		