Course Plan

Semester: 1	Academie	: Year: 1401-1402			
Level: MD	Major:	Major:			
Course Title: Medical Physics	Departm	Department: Medical Physics			
Course Code:1344019		University Professor or Faculty member:			
Class NO:	Credit Ho	Credit Hours: 34 h			
Prerequisite:		Credit Units: (Theo and Prac)			
Availability of Professor:	Tel: +98-	Tel: +98-3137929095			
Office Address:	E-mail:	E-mail: shahbazi@med.mui.ac.ir			
Name of Student Representative and Cellphon Number:	Number	Number of Students :			
The General Purpose of the Lesson: Concepts and applications of Physics in M	licine				
Learning Outcomes (Objectives):					
Assessment Methods:					
(The Assessment Methods that will be Used to Stated in learning Outcomes)	est Students Learnir	ng outcomes & the Skills & Competencies			
Assessment	Score From 20				

Assessment	From 20
Mid Exam (Theory)	10
Final Exam	10
Practical Exam	0
Assignments:	0
Total Marks	20

Main References (Text Books):

- 1. Martin Hollins. Medical Physics, 2nd ed., McMillan Education Ltd, London, UK.
- 2. Cameron JR, Skofronick G. Medical Physics. John Wiley & Sons, New York, USA.
- 3. Basic Physics of Nuclear Medicine, Kieran Maher, Wikibooks contributor, 2006.

References for More Reading:

1- CHRISTENSEN'S PHYSICS OF DIAGNOSTIC RADIOLOGY 4th Edition, by James E. Dowdey Robert E. Murry, Thomas S., Iii Curry, WOLTER; 1990.

2- Nuclear Medicine Physics: The Basics, Eighth Edition, by Ramesh Chandra , Arman Rahmim, LWW; 8th edition, 2017.

Student's Responsibilities:

Г

NO of	Main Topic	Teacher's	Place	Date	Method of Presentation
Session		Name	& Time		
1	Properties of Electromagnetic waves, Visible light, Infrared, and Ultra violet (Domain of frequencies, Biological effects and applications) and Spherical and Cylindrical lenses: their different types and properties	Prof. Shahbazi- Gahrouei			
2	Instruction and function of the Eye, Visual Function, Optical defects and their correction (Myopia, Hypermetropia, Presbyopia, and Astigmatism) and Strabismus	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			
3	 Instruments in clinical optics LASER: Concept, Basic Physics, Properties and its application in Medicine 	w			
4	High frequency currents, Microwave, Diathermy and their application for treatment of diseases	w			
5	Basic radiation physics, atomic and nuclear structure, and interaction of radiation with matter	w			
6	Radioactivity decays, the radioactivity decay law, units and				
7	Radiation dosimetry, units and instruments (Gas filled and Scintillation detectors)	'n			

8	Nuclear medicine physics, Nuclear medicine imaging systems, and its application in cancer treatment	n		
9	The basic Physics of Ultrasound, its properties and produce and detect of ultrasonic waves	Prof. Tavakoli		
10	Different techniques of ultrasonic imaging and biological effects	N		
11	The basic physics of X-ray, properties, spectrum and structure of x-ray tubes	w		
12	X-ray image formation, imaging systems and the effect of different factors on a good quality image	n		
13	Different type of X-ray image modalities (Mammography, Fluoroscopy, and CT) and introduction to MR imaging	n		
14	The physics of radiation therapy and its different types	"		
15	Concept of Radiation biology, biological effects of radiation on human tissues and cells radiation sensitivity	n		
16	Radiation protection, its organizations and limits for occupational exposures	W		