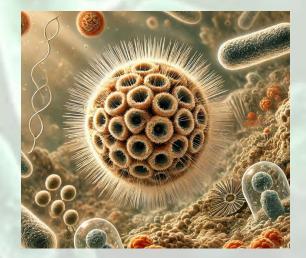
Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines


> Presented by: M.Zolfaghari

Importance of Vaccines in Human Health

- COVID-19 pandemic impact: 359 million infections, 5.6 million deaths.
- Vaccines' role in preventing widespread devastation.

Types of Vaccines

- Live, attenuated or killed viruses/bacteria.
- Subunit vaccines: polysaccharides, nucleic acids, proteins.
- Challenges in Vaccine Development
 - Supply chain problems, storage complications, and high costs.

Challenges in Vaccine Design and Mucosal Immunity

Key Challenge in Vaccine Design

- Balancing systemic immunity and protective mucosal responses.

Importance of Mucosal Immunity

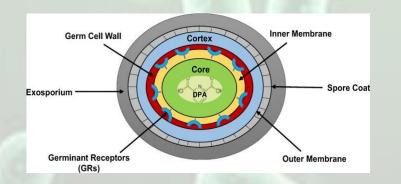
- Secretory IgA (sIgA) synthesis is critical to block pathogens at the entry site.
- Traditional vaccines induce low mucosal immunity when delivered systemically.

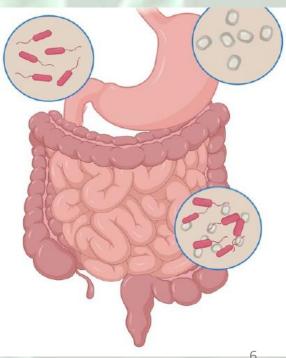
Advantages of Oral/Nasal Vaccine Delivery

- Enhances local immunity (e.g., mucosal surfaces).
- Non-invasive
- Eliminates needle-related risks and bypasses hepatic metabolism.
- Generation of cross-reactive immune response

Current Limitations

- Only 9 mucosal vaccines approved for human use.
- Mostly live attenuated or whole-cell inactivated vaccines
- Limited due to greater tolerability of orally administered whole-cell killed antigens
- Instability of antigens and susceptibility to proteases/endonucleases.


		Trade Name	Approved	Antigen	Type of vaccine	Form/Adm	Immunological mechanism
	era	Dukoral® Euvichol Shanchol Vaxchora™	2003 CANADA 2013 WHO 2015 FDA	Vibrio cholerae +CTB Vibrio cholerae Vibrio cholerae	Live attenuated Inactivated Live attenuated	Aqueous/Oral Aqueous/Oral Aqueous/Oral	Antibacteria, toxin -specific and LPS- specific IgA
	Acute gastroenteritis	Vivotif®	2013 FDA	Salmonella typhimurium	Live attenuated	Capsule/Oral	Mucosal IgA, systemic IgG and CTL responses
	Influenza	Fluenz™/FluMist®	2003 FDA	Influenza A and B viruses	Live attenuated	Spray/Nasal	Mucosal IgA and CTL responses
	Polio	OPV (b/m/tOPv)	1961 FDA	Poliovirus	Live attenuated	Aqueous/Oral	Mucosal IgA, systemic IgG
	nfant Jiarrhea	RotaTeq® Rotarix	2006 FDA 2008FDA	Rotavirus RIX4414 strain	Live reassortant Live attenuated	Aqueous/Oral Aqueous/Oral	Mucosal IgA, systemic neutralizing IgG
×.	respiratory disease	Adenovirus Type 4 and 7 Vaccine	2015 FDA	Adenovirus Type 4 and 7	Adenovirus vector vaccine	Aqueous/Oral	


Critical Needs for Advancing Mucosal Vaccines

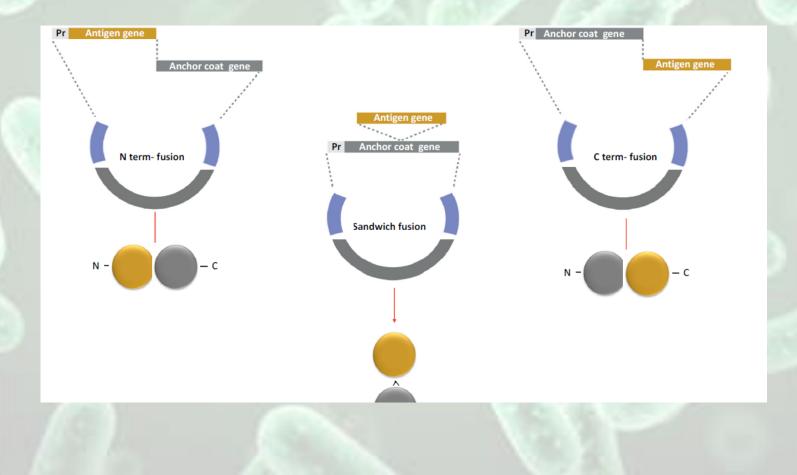
- Development of safe and effective mucosal adjuvants.
- Innovative antigen delivery strategies required.

Sporulation and Intestinal Life Cycle

- Germination and Gut Interaction:
- Spores pass through the stomach and germinate in the small intestine.
- May sporulate again in the lower intestine.
- Contribution to balance of gut Microbiota and facilitating digestion And support gut health.
- Help modulate the immune response with secrete hydrolytic enzymes antioxidants vitamins and peptides and antimicrobial compounds

Advantages of Spore-Based Vaccine Systems

- Spore Stability: Bacillus spores have extreme resistance to high temperatures, acidic pH, and chemicals, making them ideal for vaccine formulation.
- Extreme Stability: Spores with stand processing, storage, and extreme conditions, ideal for vaccines in developing regions.
- Safety: Spore formers are safe for human and animal use, commonly found in probiotics and promoting gut health.


- Efficient Antigen Display on Spore Surfaces : All coat proteins are synthesized during sporulation, eliminating the need for complex translocation steps.
- Large Protein Display: Large antigens can be fused to spore coat proteins without affecting spore structure, resistance, or germination.
- Vaccine Development Potential: This system shows promise for developing stable, safe, and effective mucosal vaccines.

Antigen Display Strategy on Spore Surface

- Recombinant vaccines: Immunogenicity depends on factors like protein stability and surface exposition of the antigen.
- Anchor Protein :
- ensure proper attachment of the antigen to the spore surface
- allow correct epitope presentation.
- maintain the recombinant antigen's structural stability under stress (pH, temperature, redox conditions) to prevent degradation by proteases.

Antigen Display Strategy on Spore Surface

• **Fusion Types:** occur at the N-terminus, C-terminus, or internally (sandwich fusion) of the anchor protein.

Anchor Proteins

- CotB, CotC, and CotG proteins are used as anchors to display antigens on the spore surface.
- CotB: First used in surface display technology with tetanus toxin fragment (TTFC) induced production of sIgA and IgG in animal protected mice against tetanus toxin
- **CotC** : display proteins like *Clostridium difficile* toxins
- **CotG:** displaying viral antigens , proteins such as UreA from *H. acinonychis* and a fragment of the flagellar cap protein FliD in *C. difficile*

Other Anchor Proteins (CotZ and CgeA)

- CotZ and CgeA have also been used as anchor proteins.
- CotZ : display *Clostridium difficile* proteins,
- CgeA: Expression of the cytotoxin-associated protein CagA gene of *H. pylori* proteins
- Using different anchor proteins for antigen display in spore-based vaccines shows great potential.

Strategies for Optimizing Antigen Exposure on Spore Surface

1: Linker Peptides: various linker peptides (5-11 amino acids)

- ✓ Increase Stability and Flexibility
- ✓ improve antigen exposure
- ✓ Improving Immunogenicity

 For example:increased the efficiency of antigen display with linkers in CgeA-CagA and CotB-UreA systems.

Cont....

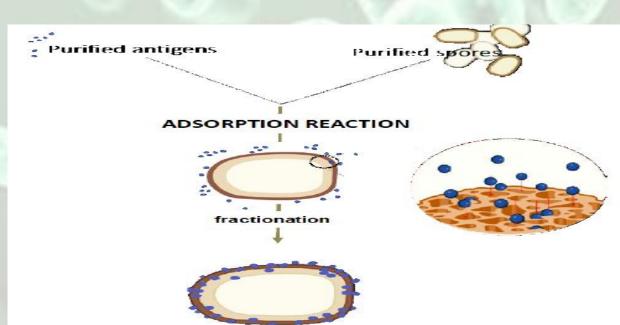
The choice of linker is critical for the stable and effective display of antigens on spore surfaces.

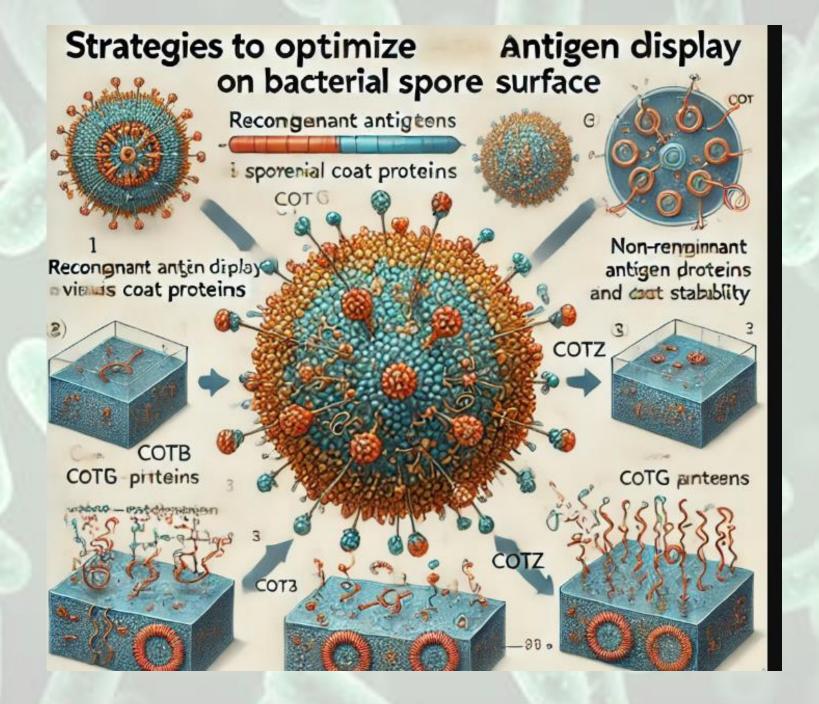
- ✓ Longer linkers like GGGEAAAKGGG : improving the display of the antigen on the spore surface with stable α -helical structures
- ✓ shorter linkers like GGGGS :fail to support secondary structures, leading to instability and reduced antigen display.
 - Antigens like FliD and UreA showed better exposure with flexible, longer linkers.

2. Multi-Antigen Spore-Based Mucosal Vaccine

Multifunctional Immune Activation:

Display various molecules (antigens, adjuvants) on spore surfaces to activate multiple immune cell types for combating aggressive pathogens.


- Plasmid Library for Antigen Display: A library of 16 constructs fusing different coat proteins (CotB, CotC, CotG, CotZ, CgeA) with antigens at both N-terminal and C-terminal positions.
- Example H. acinonychis UreB Fragment: Spores expressing IL-2 and H. acinonychis UreB fragment induced a stronger immune response in mice.


3. Non-Recombinant Antigen Display

• Non-GMO Approach:

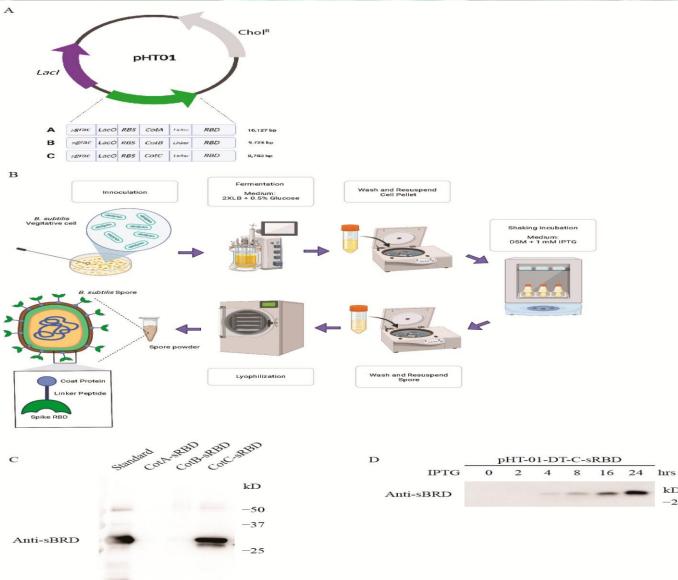
Antigens can be non-recombinantly adsorbed onto the spore surface.

- Spore Properties: Spores' negatively charged and hydrophobic nature aids adsorption.
- Optimal Conditions: stable at high temperatures and low pH
- display antigens in inactivated spores
- ✓ Control of Antigen Display by Temperature-Dependent Coat Protein Expression in Spores(e.g., producing at 25°C vs. 37−42°C).

Conclusions

Health Concern: Mucosal infections are a significant global health issue Limited Vaccines: Few mucosal vaccines are available due to challenges in delivery systems

Spores:High stability due to remarkable resistance and Safety records of many spore-forming species

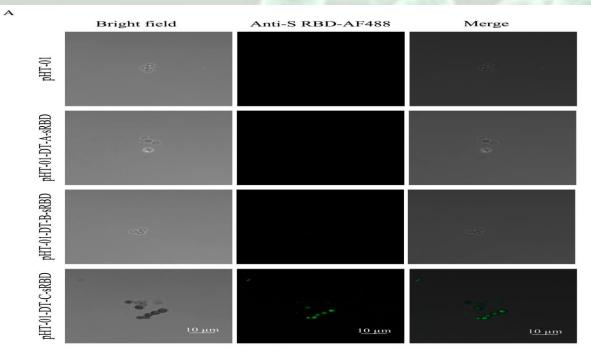

Research Examples:

- Potocki et al. (2017) increased immune response against C. difficile in mice using IL-2-expressing spores.
- Nguyen et al. (2013) demonstrated binding of recombinant spores to tumor cells for targeted drug delivery.

Future Potential

- Clinical Trials Needed: Spores for antigen display should be further tested in advanced clinical trials.
- Vaccine Benefits: Spores offer a safe, economical, and targeted approach for mucosal vaccines.

Method

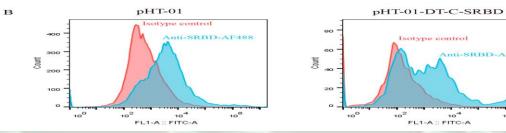


kD

-25

Result

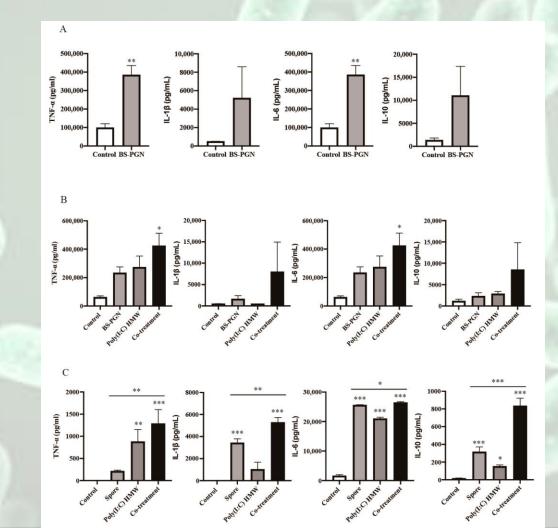
Immunofluorescent staining

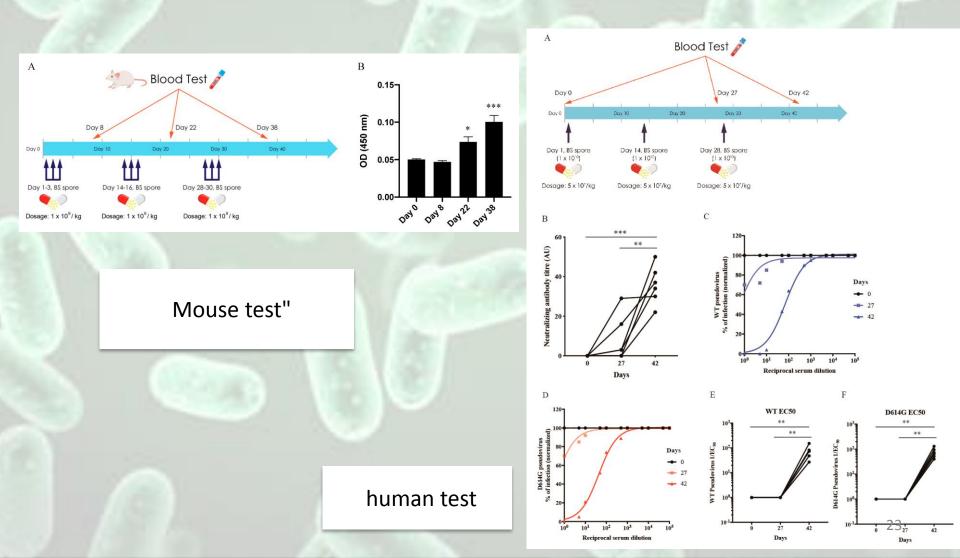


Isotype control

2 10⁴ FL1-A :: FITC-A

Anti-SRBD-AF488


100


21

Result

Dendritic cell cultures

Result

References

 Isticato R. Bacterial Spore-Based Delivery System: 20 Years of a Versatile Approach for Innovative Vaccines. Biomolecules. 2023 Jun 6;13(6):947. doi: 10.3390/biom13060947. PMID: 37371527; PMCID: PMC10296236.

.

- Saggese A, Baccigalupi L, Donadio G, Ricca E, Isticato R. The Bacterial Spore as a Mucosal Vaccine Delivery System. Int J Mol Sci. 2023 Jun 29;24(13):10880. doi: 10.3390/ijms241310880. PMID: 37446054; PMCID: PMC10341597
- II. Sung JC, Liu Y, Wu KC, Choi MC, Ma CH, Lin J, He EIC, Leung DY, Sze ET, Hamied YK, Lam DM, Kwong KW. Expression of SARS-CoV-2 Spike Protein Receptor Binding Domain on Recombinant *B. subtilis* on Spore Surface: A Potential COVID-19 Oral Vaccine Candidate. Vaccines (Basel). 2021 Dec 21;10(1):2..

