In the Name of God

Journal Club Presentation

New Detection Platform for Screening Bacteria in Liquid Samples

Farzaneh M. Rostami

PhD Candidate of Medical Bacteriology

farzaneh.rostami@resident.mui.ac.ir

Wednesday, 13 October 2021

Article New Detection Platform for Screening Bacteria in Liquid Samples

Rita La Spina^{1,†}, Diana C. António^{1,†,‡}, Radoslaw Bombera^{1,§}, Teresa Lettieri¹, Anne-Sophie Lequarré², Pascal Colpo¹ and Andrea Valsesia^{1,*}

- ¹ European Commission, Joint Research Centre (JRC), Ispra, Italy; Rita.LA-SPINA@ec.europa.eu (R.L.S.); diana_conduto@hotmail.com (D.C.A.); radoslaw.bombera@gmail.com (R.B.); Teresa.LETTIERI@ec.europa.eu (T.L.); pascal.colpo@ec.europa.eu (P.C.)
- ² European Commission, Joint Research Centre (JRC), Brussels, Belgium; Anne-Sophie.LEQUARRE@ec.europa.eu
- Correspondence: andrea.valsesia@ec.europa.eu; Tel.: +39-0332789704
- + These authors contributed equally.
- Current address: ECHA (European Chemicals Agency), Telakkakatu 6, 00150 Helsinki, Finland.
- G Current address: BioNavis LTD, Hermiankatu 6 8 H, 33720 Tampere, Finland.

Citation: La Spina, R.; António, D.C.; Bombera, R.; Lettieri, T.; Lequarré, A.-S.; Colpo, P.; Valsesia, A. New Detection Platform for Screening Bacteria in Liquid Samples. *Biosensors* **2021**, *11*, 142. https://doi.org/ 10.3390/bios11050142

Received: 17 March 2021 Accepted: 28 April 2021 Published: 1 May 2021

Indexed in

ISI, Scopus,

DOAJ

PubMed, Embase,

IMPACT FACTOR 5.519

Biosensors (ISSN: 2079-6374)

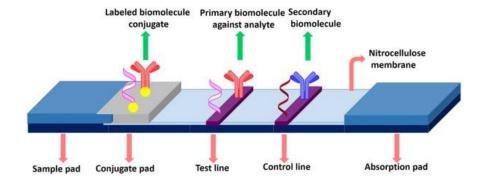
JCR category rank: Q1: Chemistry, Analytical | Q1: Instruments & Instrumentation | Q2: Nanoscience & Nanotechnology

- What is new about the paper? (Introduction)
- Where does it fit in the context of prior work? (Background)
- What methods were used? (Methods)
- What were the primary results? (Results)
- What do the authors think these results mean? (Conclusions)
- What is your assessment of the paper? (Critique)

- Development of methods for the rapid detection and identification of bacteria
- Standardized methods (highly accurate and sensitive)

• Polymerase chain reaction (PCR)

• Quantitative PCR (qPCR)


• Enzyme-linked immunosorbent assay (ELISA)

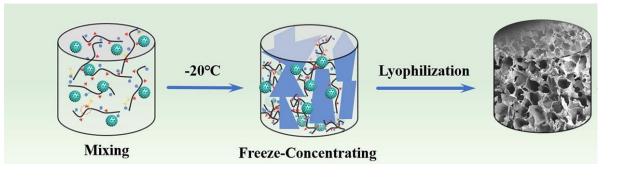
• Lateral flow assay (LFA)

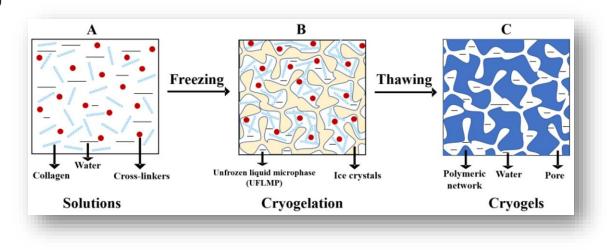
Genetic and immunological features of microorganisms

Introduction

- LFA is a rapid test format using antibodies as bioreceptors and colorimetry as detection method.
- Specific antibody-coated magnetic beads
- Gold nanoparticles bearing antibodies
- Flow cytometric methods

Introduction


we present a new method combining:


• pre-enrichment step using a microporous cryogel

pHEMA-AEM 2-hydroxyethylmethacrylate (HEMA) 2-Aminoethyl methacrylate hydrochloride (AEM)

- detection step using antimicrobial peptides (AMPs)
- labelled antibodies for identification

Introduction

The developed assay consists of three steps:

- (i) entrapment of bacteria in the cryogel;
- (ii) desorption of bacteria from the cryogel and measurement of their affinities toward immobilized AMPs
- (iii) bacteria identification using specific labelled antibodies.

E. coli K12 as Gram-negative (Gram (–)) and *Bacillus sp.* 9727 Gram-positive (Gram (+)) bacteria

using cecropin B and cecropin P1 AMPs.

1. Chemicals • 2-hydroxyethylmethacrylate (HEMA)

- 2-Aminoethyl methacrylate hydrochloride (AEM)
- *N*,*N*'-methylenebisacrylamide (**MBAA**)
- ammonium persulphate (APS),
- 1,2-bis(dimethylamino)ethane (**TEMED**)
- and cecropin B and cecropin P1 were purchased from Merck KGaA (Darmstadt, Germany).
- Phosphate buffer saline (**PBS**) was purchased from Gibco Italia.
- Noble Agar were purchased from BD Diagnostics (Franklin Lakes, NJ, USA).
- Antibodies against *E. coli* (Polyclonal anti-*E. coli* ab13627) were purchased from Abcam (Cambridge, UK)
- Quantum dots (QDs) and Qdot[™] Incubation Buffer were purchased from Invitrogen (code Q10101 MP and Q20001 MP, respectively).

2. Bacterial Cultures

- Bacterial strain *E. coli* K12 (DSM No: 6897)
- and *Bacillus sp.* 9727 (DSM No: 9727)
- kept at -20 °C for long storage
- washed in PBS before analysis

3. Synthesis and Physico-Chemical Characterization of the P(HEMA-AEM) Cryogels

- Cryogel _
- 2 mmol of AEM,
 3.9 mmol of HEMA
 and 2 mmol of MBAA in 9 mL of water

- 30 min, 1% *w/w* APS/TEMED
- in 0.5 mL solution in a glass tube of 7 mm diameter
- washed with an of water and ethanol (0, 30, 50, 70, 90, 100%)
- dry at room temperature (RT)

4. Surface Characterization

- scanning electron microscopy (SEM)
- the cryogel was washed with an increasing percentage of ethanol
- treated using critical point drying (CPD)

5. Adsorption of Bacteria onto P(HEMA-AEM) Cryogels in PBS and Spiked Water Samples

- in buffer at RT with gentle shaking
- 45 mg of dried P(HEMA-AEM) cryogel were added to 4 mL of PBS containing bacteria
- Experiments on adsorption kinetics
- the adsorption of bacteria in different matrices was evaluated by environmental water (Lago Maggiore, Italy) and bottled mineral water
- All experiments were performed in triplicates

- 10⁴ to 10⁸ cells *E. coli* (cells mL⁻¹)
 Bacillus sp. at 10⁸ cells mL-1

6. Quantification of Adsorbed Bacteria onto P(HEMA-AEM)

$$A = \frac{C_e - C_0}{C_o} \times 100,$$

$$C_0 \text{ is the initial concentration of viable } E. coli \text{ bacteria (cells mL}^{-1})}$$

$$C_e \text{ is the bacteria concentration remaining in supernatant solution at the equilibrium}}$$

7. Quantification of Adsorbed Bacteria onto P(HEMA-AEM) in Flow Condition

- in flow condition at RT, in PBS, at flow rates of 0.05, 0.1, or 0.3 mL min⁻¹
- 30 mL of bacteria was prepared at the initial concentration of 10^8 cells mL⁻¹
- turbidimetric analysis

8. Elution of Adsorbed Bacteria from P(HEMA-AEM) Cryogel

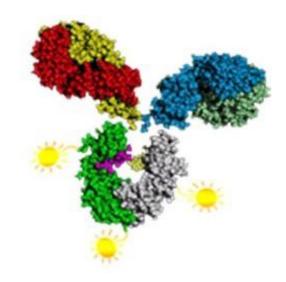
- 45 mg of P(HEMA-AEM) cryogel was incubated for 6 h in 10 mL of *E. coli* and *Bacillus sp.*then
 4 mL of 1 M NaCl
 and phosphate buffer at pH 12
 - turbidimetric and CFU analysis.

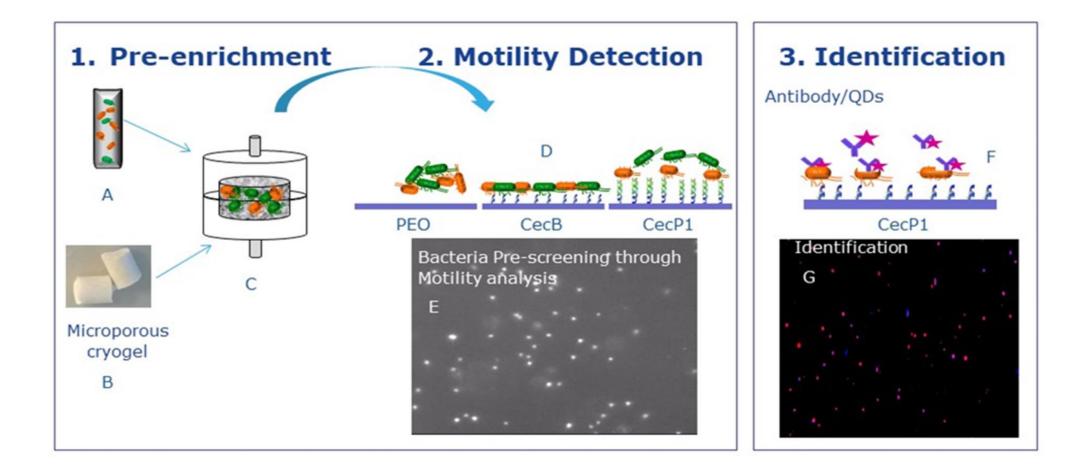
9. Bacterial Motility Measurements

- A silicon wafer was coated with a 100 nm thick layer of PEO
- Plasma polymerization
- The PEO layer was functionalized by incubating the surface with 50 μ g mL⁻¹ AMPs solution
- Optimization and confirmation of the surface functionalization with AMPs bioreceptors was performed by surface plasmon resonance
- analyzed using ImageJ
- The motility of each strain interacting with each PEO-AMPs surface was compared

Polymer substrate

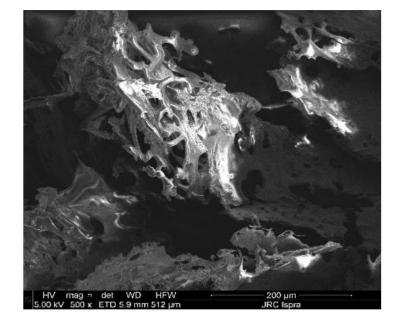
Plasma polymerized

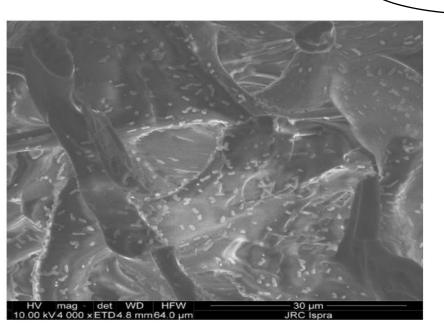

Monomer


molecule

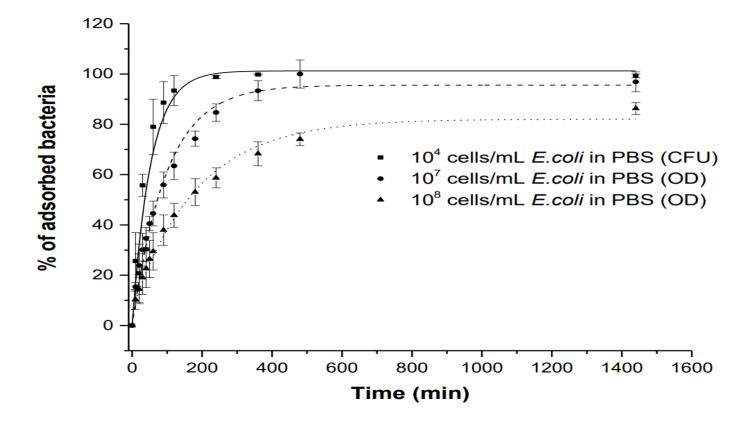
::/::::

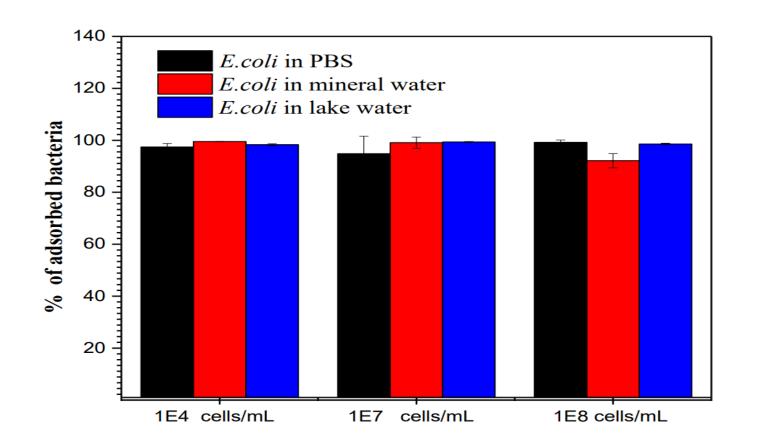
10. Bacteria Identification Test with Labeled Antibodies


- Anti-*E. coli*-QDs conjugates were prepared
- the test was only performed for the detection of *E. coli*.
- The comparison of the images obtained by DF
- The image acquisition was obtained in DF and FM

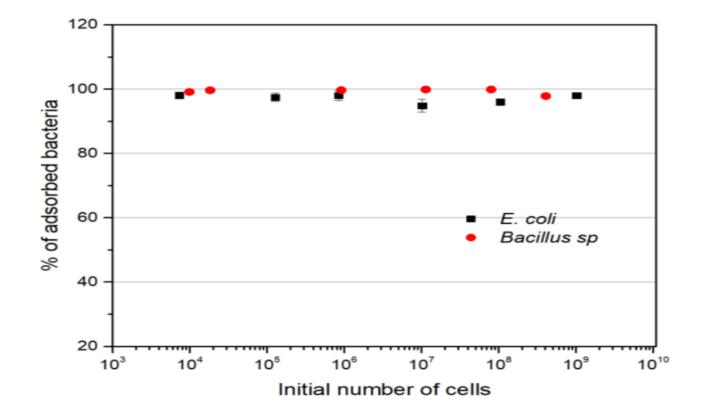


1. Physico-Chemical Characterization of P(HEMA-AEM) Cryogel

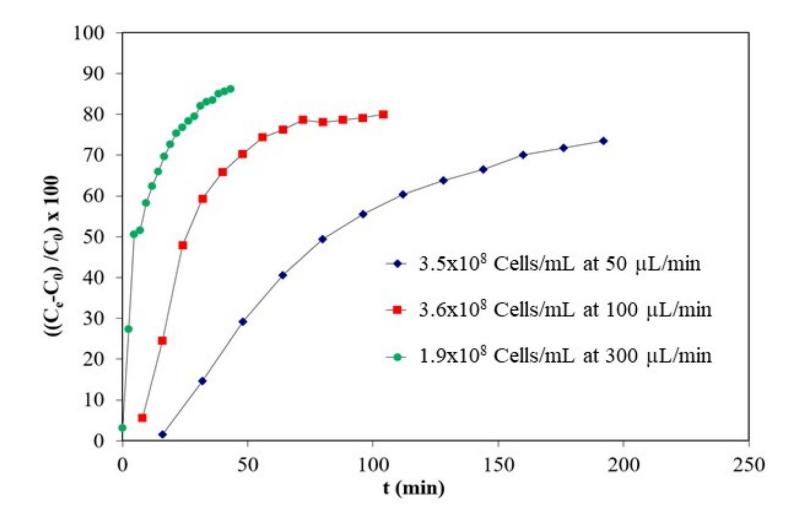

2. Adsorption of Bacteria in PBS and Spiked Water Samples _


SEM image of the P(HEMA-AEM) cryogel before and after incubation with bacteria showing its 3D microporous structure and clearly evidencing the binding of bacteria after 6 h of incubation.

2. Adsorption of Bacteria in PBS and Spiked Water Samples

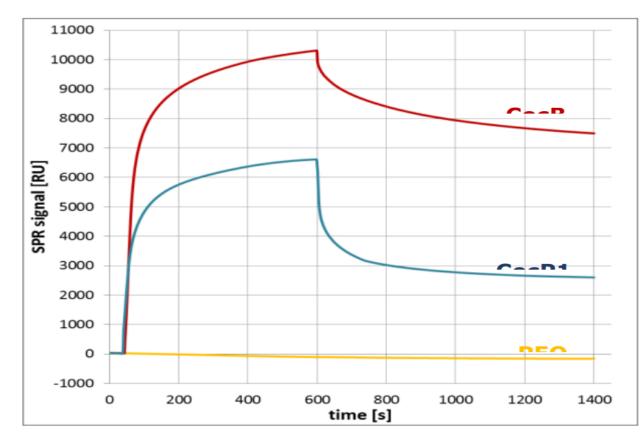

Adsorption kinetics of *E. coli* (initial concentration = 10^4 , 10^7 and 10^8 cells mL-1) onto P(HEMA-AEM) cryogel in PBS.

2. Adsorption of Bacteria in PBS and Spiked Water Samples


- Comparative adsorption of E. coli bacteria at the concentration of 10⁴, 10⁶ and 10⁸ cells mL-1 in PBS, in lake water and in commercial mineral water.
- 45 mg of dried cryogel were suspended in 4 mL of bacteria suspension

2. Adsorption of Bacteria in PBS and Spiked Water Samples

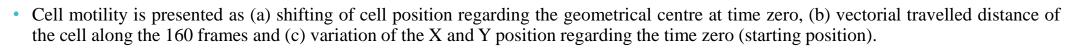
 Adsorption of bacteria ranging from 10⁴ to 10⁸ cells mL-1 *E. coli* and *Bacillus sp.* bacteria keeping constant the ratio of cryogel and volume of bacteria to 45 mg per 4 mL


2. Adsorption of Bacteria in PBS and Spiked Water Samples

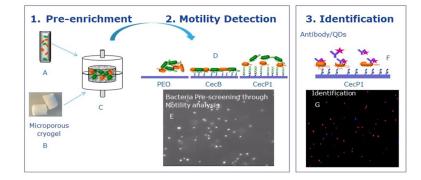
3. Elution of Adsorbed Bacteria from P(HEMA-AEM) Cryogel

- ✓ For the desorption, the same cryogels were suspended in a water solution containing 1 M NaCl, which enabled the release of 45% of the *E. coli* bacterial cells attached on the cryogel within 1 h. (data not shown)
- ✓ The use of 0.01 M phosphate buffer at pH 12 was more effective; enabling the release of 45% of *Bacillus sp*. from the cryogel.
- ✓ capability to entrap and elute large amounts of bacteria makes the cryogel very efficient in harvesting pathogens
- ✓ adapting the cryogel to a solid phase extraction (SPE) disk holder, for bacteria harvesting directly in situ

4. Detection and Identification of Bacteria



Bioreceptor Immobilization


• PEO Surface functionalization with Cecropin P1 (CecP1) and Cecropin B (CecB) monitored by SPR.

4. Detection and Identification of Bacteria

Determination of Bacteria Affinity toward AMPs by Motility Measurement

5. Bacterial Motility Measurements

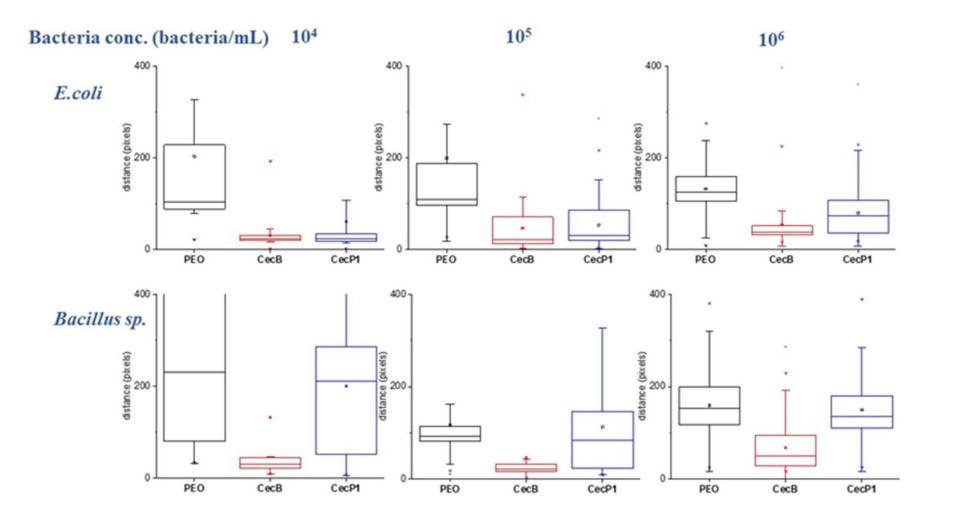
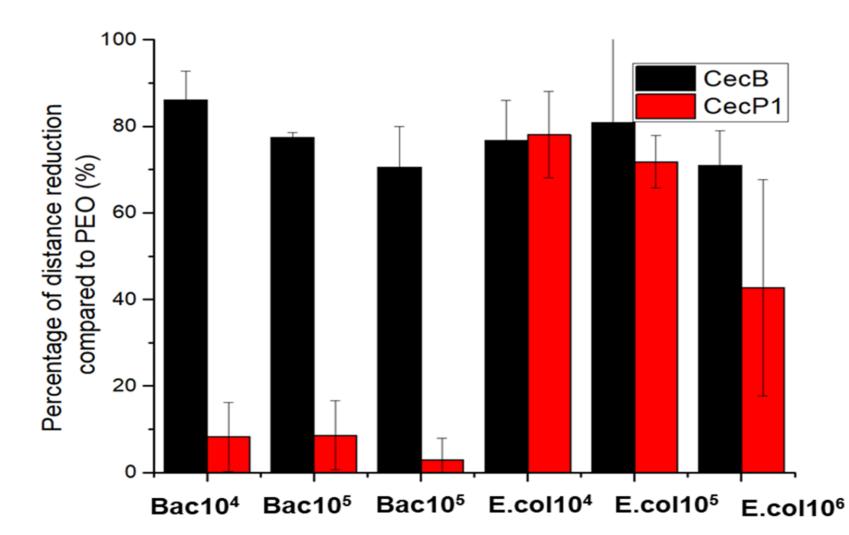
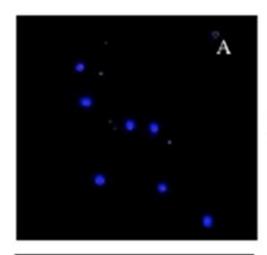
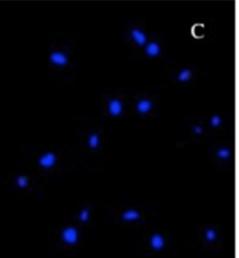
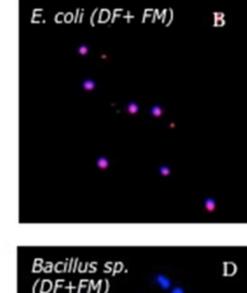



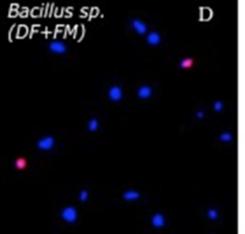
Figure shows the motility measurements on the bare PEO and AMPs functionalized PEO (average distance travelled by the counted bacteria) for different bacteria concentrations of *E. coli* and *Bacillus sp.*

5. Bacterial Motility Measurements

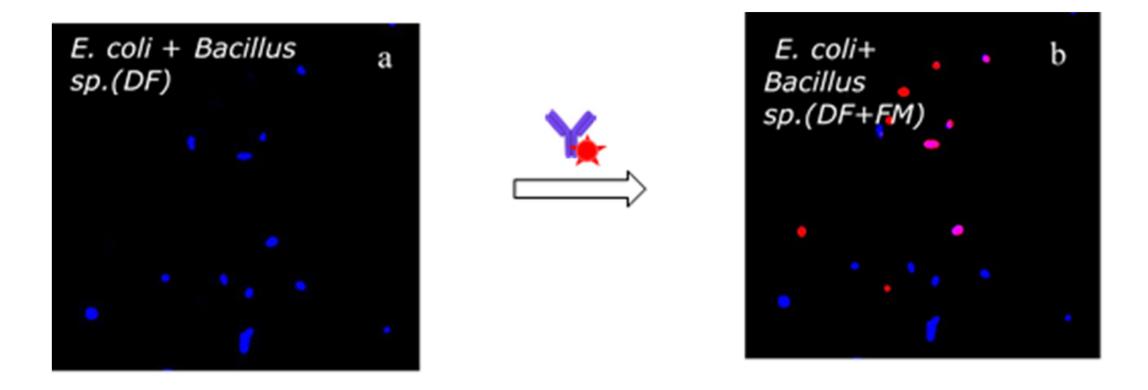



Summary of the motility analysis of *E. coli* and *Bacillus sp.* on PEO, CecB and CecP1 at different concentrations of bacteria. It shows the percentage of reduction in motility compared with the motility of bacteria on PEO.


5. Bacterial Motility Measurements


 The obtained results are in agreement with the literature and show that CecB AMPs have a high-affinity for both Gram (+) and Gram (-) bacteria, while the CecP1 only shows a high-affinity for the Gram (-) bacteria.

6. Bacteria Identification by Labelled Antibodies


(A) DF image of *E. coli* bacteria immobilized on cecropin B AMPs.

(**B**) Overlapping of DF and fluorescent images of the same area (fluorescent bacteria in pink).

(C) DF image of *Bacillus sp.* bacteriaimmobilized on cecropin B AMPs(bacteria in blue).

(**D**) Overlapping of DF and fluorescent images in the same area (fluorescent bacteria in pink).

6. Bacteria Identification by Labelled Antibodies

(a) DF image of *E. coli* and *Bacillus sp.* bacteria immobilized on cecropin B AMPs (bacteria in blue).

(b) Overlapping of DF and fluorescent images of the same area (fluorescent bacteria in pink).

Conclusions

** P(HEMA-AEM) microporous cryogel is a material of choice to enrich bacteria concentration from different samples .

** The advantages of this approach: --

(i) the use of a **label-free method** for detecting the presence of possible pathogenic bacteria in water samples;

(ii) **fast response** in detecting the bacteria since the screening is carried out **in 30 min**; and

(iii) the use of dark field and optical microscopy as detection methods, which is often available as laboratory equipment and also does not need specialized personnel.

► this study shows that **motility monitoring**, i.e., affinity towards a small set of AMPs, allows us to differentiate bacteria families by looking at *Escherichia coli* and *Bacillus sp.* **as models** for Gram-negative and Gram-positive bacteria, respectively.

► The use of **AMPs** with broad specificity combined with labelled antibodies enabled the detection and potential categorization of a large spectrum of unknown or unexpected bacteria.

► The ability of the **biosensor** to detect targeted pathogens in low concentrations among several other bacterial species and cells needs to be further addressed

Thank you for your attention ③