

Polyaniline-pectin nanoparticles immobilized paper based colorimetric sensor for detection of *E.coli* in milk and milk products

Student: *mahdieh momtaz*

Master: Dr. poursina

Title

> Introduction

- > Methods
- > Results
- Conclusion

Introduction

- > Milk and milk products play an important role in human diet.
 - *E.coli* is One of the frequently microorganisms in milk and milk products.
- Rapid detection of *E. coli* is a major challenge faced by food processing industries.
- > Traditionally used conventional methods for the detection of *E. coli* culture-based.

- Detection approaches using paper-based colorimetric sensors: simplicity, selectivity, rapidity and cost effectiveness
- The developent of a simple and cost-effective paper based colorimetric sensor using Polyaniline-Pectin nanoparticles (PANI- PEC NPs).

Methods

Synthesis of PAni- Pec nanoparticles

9

Synthesis of PAni- Pec nanoparticles

Characterization of PANI- PEC nanoparticles

FTIR spectrum : range 4000–400 cm-1

UV–Vis spectrum : range 300–1000 nm

> Zetasizer nano

Construction of colorimetric sensor strips

1. Fabrication of PAni-pec solution(1-5mg/ml)

2. Drying at 45°C/30 min in incubator

3. Cutting into strips

4. Exposure to UV in 20 min for surface sterilization

5. PAni-pec strips

Environmental components with different concentrations(0.1-5%) were optimized for *E. coli* selection:

lactose, tryptophan, yeast extract, chondroitin sulphate, sodium lauryl sulphate, potassium chloride, tergitol-7, gentamycin sulphate and ampicillin trihydrate.

- Preparation Cell suspensions of different cell levels (~8-~0.5 log CFU/ mL) of *E. coli* in normal saline and inoculated into media prepared.
- ✓ Detection of *E.coli* with maximum growth in minimum time .

Optimization of sample volume

- > Prepare ~ $0.5 \log CFU/mL E. coli$ in normal saline .
- > Inoculation of different volumes of normal saline into the optimal medium.
- ➢ Rapid color change → Optimal sample volume
- Volume optimized: 500 μL

- Preparation of *E.coli* suspension with different concentrations of 8 log CFU/mL to ~0.5 log CFU/mL.
- Evaluated change coloration within 30 min to 12 h.
- > Perform protocols for raw milk, pasteurized milk .

Protocol for detection of *E. coli* using paper strip sensor

0.5 ml optimized media

Addition of 0.5 ml of sample

dittantes.

Vortex

Incubation at 37°C

Color change from blue to green indicates the presence of *E.coli*

Selectivity study of PANI- PEC colorimetric strip-based sensor

- > Determination of sensor selectivity with gram-positive and gram-negative bacteria :
- *Listeria monocytogenes / Staphylococcus aureus / Bacillus cereus / Enterococcus faecalis*
- > Salmonella arizonae/ Enterobacter aerogenes / Shigella flexnerii

Citrobacter freundii / Yersinia enterocolitica / Proteus vulgaris

Klebsiella pneumoniae / Serratia marcescens

- > Store the strips at room temperature, $4 \degree C$ and $-20\degree C$.
- ▶ Check the sensitivity and intensity of the color for 6 months at intervals of 15 days.

Results

characterization of PANI- PEC nanoparticles

FTIR spectroscopy of PANI- PEC nanoparticles

22

characterization of PANI- PEC nanoparticles

UV-Vis absorption spectra

Size distribution profile

Construction of colorimetric sensor strips

Optimization of PANI-PEC nanoparticles concentration.

Sensitivity of PANI-PEC paper strip for the detection of *E. coli.* (-ve C -:Negative control; MC:Media control; NSC: Normal saline control).

Plot showing sensitivity of PANI-PEC strip based sensor assay for detection of E. coli

Enrichment in MacConkey broth

Streaking on MacConkey agar

RM6	RM32	RM27
60 3		
Pink colonies with bile precipitate	Pink colonies with bile precipitate	Pink colonies

IS: 5887 (Part-1):1976 method

Purple colonies with green metallic sheen

RM32

Shelf-life study of PANI- PEC colorimetric strip

Sensitivity of PANI-PEC colorimetric strips stored at different temperatures

- The developed PANI- PEC colorimetric strip-based sensor assay is simple, sensitive and selective. For this reason, it has good sensitivity and selectivity for identifying *E. coli* without interfering with factors like physico-chemical properties of milk.
- Absence of any bio-recognition elements such as antibody, DNA or any enzymes in the strips along with the excellent thermal and environmental stability of polyaniline dramatically improves its shelf life.

 \succ

FISEVIER

Current Research in Food Science 5 (2022) 823-834

Contents lists available at ScienceDirect

Current Research in Food Science

journal homepage: www.sciencedirect.com/journal/current-research-in-food-science

Polyaniline-Pectin nanoparticles immobilized paper based colorimetric sensor for detection of *Escherichia coli* in milk and milk products

M.K. Anjali^a, G. Bharath^a, H.M. Rashmi^b, Jaswal Avinash^a, Kumar Naresh^a, P.N. Raju^c, H.V. Raghu^{a,*}

^a National Referral Centre, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
^b Molecular Biology Unit, Dairy Microbiology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India
^c Food Packaging Lab, Dairy Technology Division, ICAR-National Dairy Research Institute, Karnal, Haryana, 132001, India

Optimization of media components & sample volume

Optimization medium composition:

lactose (0.9%), tryptophan (0.1%), yeast extract (0.45%), chondroitin sulphate (0.015%), sodium lauryl sulphate (0.1%), potassium chloride (2%), tergitol-7 (0.0125%), gentamycin sulphate (0.00016%) and ampicillin trihydrate (0.015%).

> The sample volume for the assay was optimized to 500 μ L.

34

Selectivity study of PANI- PEC colorimetric strip-based sensor

Gram negative contaminants	Log CFU/mL
Salmonella arizonae	5.4 ± 0.12
Enterobacter aerogenes	5.2 ± 0.12
Shigella flexneri	7.4 ± 0.12
Citrobacter freundii	6.3 ± 0.76
Yersinia enterocolitica	6.5 ± 0.15
Proteus vulgaris	7.6 ± 0.11
Serratia marcescens	5.7 ± 0.07

Inhibition level of Gram negative contaminants in the developed assay