
In the Name of God

Gold nanoparticles-based multifunctional nanoconjugates for highly sensitive and

enzyme-free detection of E.coli K12

Professor Dr. Poursina

Presenter

Zeinab Fathi

Contents

Introduction

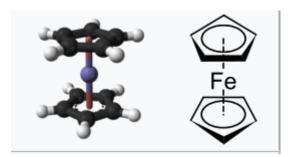
	1.	Chemicals and Materials
Material and methods	2.	Preparation of PPy-rGO/AuNPs nanocomposite and PPy@Fc/AuNPs antibody label
	3.	Preparation of the E.coli immunosensor
	4.	Apparatus
L	_	
Results and discussion	1.	Characterization of the PPy-rGO/AuNPs nanocomposite
	2.	Performance of the immunoassay to E.coli K12
	3.	Real sample testing
	4.	Selectivity, reproducibility and stability

Introduction

- Accurate and robust detection of pathogenic bacteria in food and water remains an important issue
- That is because some of the strains of E.coli
- According the estimation of World Health Organization (WHO), 1.5 million children lose their lives owing to the diarrheal diseases every year
- In the past decades, the methods for the detection of E.coli have been extensively explored
- Though reliable results can be obtained from these methods

Introduction

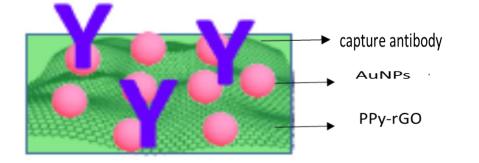
- nanocomposite has been prepared by assembling well-distributed gold nanoparticles (AuNPs) ,polypyrrole-reduced graphene oxide (PPy-rGO)
- This serves as a platform for immobilization of a capture antibody
- This nanocomposite has


high surface area good conductivity biocompatibility

Material and methods

- 1. Chemicals and Materials
- 2. Preparation of PPy-rGO/AuNPs nanocomposite and PPy@Fc/AuNPs antibody label
- 3. Preparation of the E.coli immunosensor
- 4. Apparatus

1- Chemicals and Materials


- 1. sodium citrate
- 2. ammonium peroxydisulfate (APS) and potassium ferricyanide
- 3. Lipoic acid n-hydroxysuccinimide ester (LPA)
- 4. Graphene oxide (GO) was prepared using Hummers' method
- 5. polypyrrole (PPy)
- 6. assembling well-distributed gold nanoparticles (AuNPs)
- 7. Polyclonal antibodies of E. coli
- 8. E.coli K12
- 9. Ferrocene (Fc)-labeling

2- Preparation of PPy-rGO/AuNPs nanocomposite and PPy@Fc/AuNPs antibody label

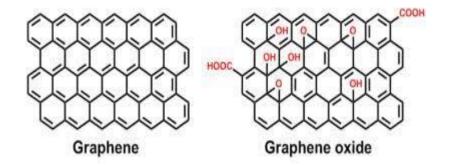
Preparation of PPy-rGO/AuNPs nanocomposite

- Graphene oxide → dw → ultrasonicated
- pyrrole and HCl —> stirred
- APS stirred
- AuNPs → centrifuged → with methanol → 60 °C for 12 h

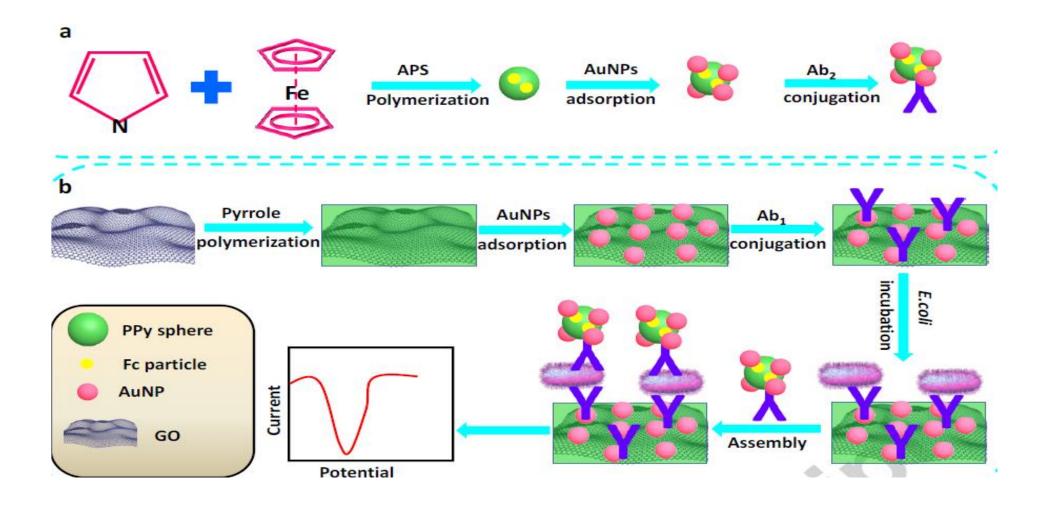
Preparation of PPy@Fc/AuNPs antibody label

- Pyrrole + HCl + SDS → dw → stirred
- Fc —> ethanol —> added to solution __> stirred
- APS + AuNPs → added to solution → centrifuged → rinsed with water → at 60 °C for 12 h.
- PPy@Fc/AuNPs + APS → 4h at 4 °C → centrifuged → rinsed with water
- PPy@Fc/AuNPs + Ab2 —> for 12 h —> rinsed with PBS
- Finally, the PPy@Fc/AuNPs-Ab2 label was stored in refrigerator at 4 °C for use

1- Chemicals and Material


- 1- Ferrocene (Fc)-labeling
- the Fc redox label is encapsulated within the matrix of the Ppy nanoparticles and used as an enzyme-free label to generate a current response
- Ferrocene (Fc)-labeling of the detection antibody is an effective way to generate a quantifiable current signal in sandwich assays

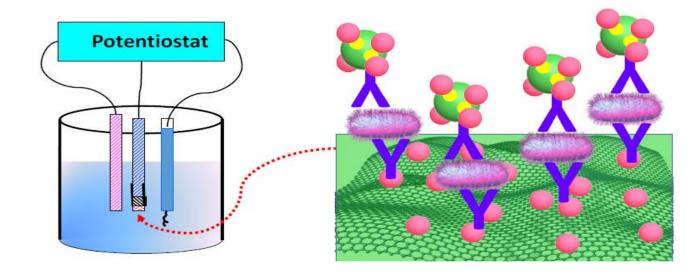
2- Polypyrrole:


- Ppy is an ideal substrate for nanoparticle modification achieve a disperse AuNPs distribution
- Ppy has good electrical conductivity, environmental stability, and biocompatibility
- Polymerization of pyrrole on graphene oxide in the presence of ammonium peroxydisulfate (APS) generates a positively charged surface
- 3- AuNPs
- prepared using citrate as reducing agent, will carry a negative surface charge and decorate the surface of the positively charged PPygraphene composite.

1- Chemicals and Material

- 4- Graphene oxide:
- Graphite oxide is a compound of carbon, oxygen, and hydrogen in variable ratios
- can be dispersed by sonication to yield monomolecular sheets, known as graphene oxide by analogy to graphene, the single-layer form of graphite
- 5- Polyclonal antibodies
- The attachment of a peroxidase-labeled detection antibody (Ab2).
- Ferrocene (Fc)-labeling of the detection antibody is an effective way to generate a quantifiable current signal in sandwich assays

1- Chemicals and Material


3. Preparation of the E.coli immunosensor

- 1. PPy-rGO/AuNPs nanocomposite (DMF) ultrasonication for 1 h.
- 2. Then the modified electrode was incubated in 0.01 M LPA solution for 4 h
- 3. Then the electrode was incubated in Ab1 solution
- 4. Finally, the electrode was rinsed again with PBS and kept at 4 °C for use.

3. Preparation of the E.coli immunosensor

□ To detect E.coli K12

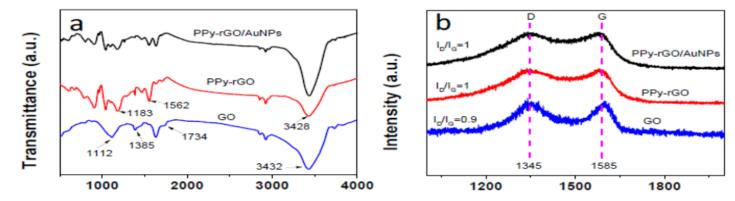
- the PPy-rGO/AuNPs nanocomposite modified electrode was incubated a series of E. coli K12
- Then the electrode was rinsed with PBS to remove the physically attached cells.
- Finally the electrode was incubated in PPy@Fc/AuNPs-Ab2 suspension for 2h at 4c

4- Apparatus

- The Fourier transform infrared (FTIR) spectra
- The Raman spectra
- transmission electron microscope(TEM)
- electrochemical station

Results and discussion

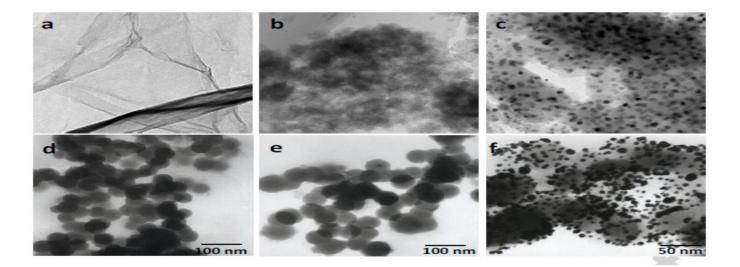
1. Characterization of the PPy-rGO/AuNPs nanocomposite


The Fourier transform infrared (FTIR) spectr The Raman spectra transmission electron microscope(TEM)

- 2. Performance of the immunoassay to E.coli K12
- 3. Real sample testing
- 4. Selectivity, reproducibility and stability

- 1. Characterization of the PPy-rGO/AuNPs nanocomposite
- a. The nanocomposite was investigated by FTIR shown
- These peaks become weaker and disappeared in the spectrum of PPy-rGO and PPy-rGO/AuNPs, which is due to reduction of the GO by pyrrole
- indicating that PPy was successfully deposited on the graphene surface

b. The samples were further studied by Raman spectroscopy

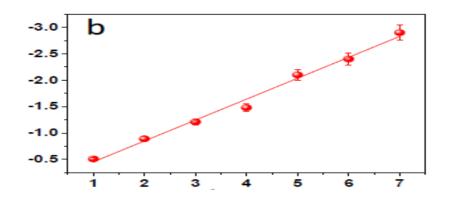

• a graphite-like band (G-band) and a disorder-induced band (D-band) were observed in all the samples, suggesting the coexistence of disordered and graphitic carbons

1. Characterization of the PPy-rGO/AuNPs nanocomposite

d- transmission electron microscope

- GO exhibits a wrinkled surface, which is the typical characterization of.a
- After the deposition of PPy on the surface of GO, the surface becomes rough .b
- The AuNPs was uniformly distributed on the surface of PPy-rGO without obvious aggregation.c
- For comparasion, the AuNPs was attached on the surface of GO without the assistance of Ppy
- However, it is caused severe aggregation on a solid surface due to high surface energy

2. Performance of the immunoassay to E.coli K12


- Fc is always used as the electrochemical probe
- When the bacteria are bound to a modified surface

□ a series of control experiments on the immunosensor were carried out.

- 1. The effect of the PPy-rGO/AuNPs loading on the current response of the immunosensor
- 2. with increasing the Ab1 concentration, the current response increased
- 3. The effect of E.coli K12 incubation time
- 4. The ionic strength of the PBS buffer is also investigated with the aim of improving the sensitivity of the immunosensor

2. Performance of the immunoassay to E.coli K12

- 5- the current response of the immunosensor to varied concentrations of E.coli K12 in PBS solution was investigated
- The peak current of the curve increased with the increasing of the E.coli K12 concentration
- The detection limit calculated is 10 CFU

Immunosensor	Bio-receptor of	Detection	Linear range (CFU	Ref.
platform	immobilization	limit (CFU	mL^{-1})	
		\mathbf{mL}^{-1})		
Electrochemical	Antibody	1.0×10 ²	1.0×10 ² -1.0×10 ⁶	[12]
PCR	DNA	1.0×10 ³	$1.0 \times 10^{1} - 1.0 \times 10^{7}$	[51]
Electrochemica	1 Antibody	1.0×10^{2}	$1.0 \times 10^{2} - 1.0 \times 10^{5}$	[52]
Fluorescence	Bacteriophage	· -	$1.0 \times 10^{4} - 1.0 \times 10^{5}$	[53]
Spectroscopy	Antibody	1.0×10^{1}	1.0×10^{1} - 1.0×10^{7}	[54]
Optical	Antibody	1.0×10 ³	$1.0 \times 10^{3} - 1.0 \times 10^{5}$	[55]
Gravimetric	Antibody	1.0×10^{3}	1.0×10 ⁵ -6.2×10 ⁷	[56]
Electrochemica	1 Antibody	1.0×10 ¹	1.0×10 ¹ -1.0×10 ⁷	This study

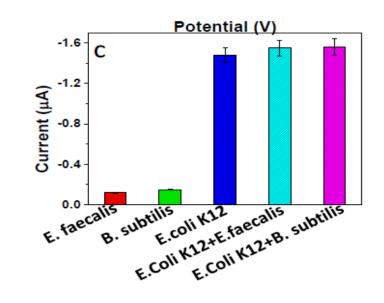
3. Real sample testing

- The performance of the immunosensors in the real-to-life conditions was investigated by standard addition method.
- Water and milk samples were spiked with E.coli K12.
- 0.1 M KCl was added to the solution and used as the supporting electrolyte.
- These results demonstrate the immunosensors with these nanocomposites are suitable for real sample analysis

Number	Added	Detected	
	(CFU mL ⁻¹)	(CFU mL ⁻¹)	Average recovery
1	$(1.5\pm0.1)\times10^4$	$(1.5\pm0.1)\times10^4$	100%
2			104%
2			
3	$(4.0\pm0.3)\times10^{4}$	$(4.1\pm0.2)\times10^4$	102%
4	$(5.0\pm0.1) imes10^4$	$(4.8\pm0.1)\times10^4$	96%
5	$(8.0\pm0.1)\times10^4$	$(8.1\pm0.2)\times10^4$	101%
1	$(2.0\pm0.1)\times10^4$	$(2.1\pm0.1)\times10^4$	105%
2	$(3.5\pm0.2)\times10^4$	$(3.4\pm0.2)\times10^4$	97%
-3			94%
4			98%
5	$(7.5\pm0.3)\times10^4$	$(7.2\pm0.2)\times10^4$	96%
	5 1 2 3	$\begin{array}{cccccc} 1 & (1.5\pm0.1)\times10^{4}\\ 2 & (2.5\pm0.2)\times10^{4}\\ 3 & (4.0\pm0.3)\times10^{4}\\ 4 & (5.0\pm0.1)\times10^{4}\\ 5 & (8.0\pm0.1)\times10^{4}\\ 1 & (2.0\pm0.1)\times10^{4}\\ 2 & (3.5\pm0.2)\times10^{4}\\ 3 & (5.0\pm0.1)\times10^{4}\\ 4 & (6.0\pm0.3)\times10^{4} \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

4. Selectivity, reproducibility and stability

a. selectivity


- To assess the selectivity of the proposed immunosensor
- the current signal for E. faecalis and B. subtilis which is significantly lower than that of E.coli K12
- These results demonstrate that the immunosensor has good selectivity and can perform well in a mixed cell culture.
- The most common electrochemical interfering Species

b. Reproducibility

- investigated by repeating with five different electrode
- 1- unique preparation of the label
- 2- immunosensor construction methods

c. Stability

- Similar test was also performed
- stored in the refrigerator at 4 °C.

Conclusions

- A simple method was proposed to disperse AuNPs on PPy surface uniformly.
- A highly sensitive sandwiched E.coli K12 immunosensor was constructed by using PPy-rGO/AuNPs as signal amplifier and PPy@Fc/AuNPs as signal generator.

	high sensitivity	potential miniaturization
 electrochemical biosensors offer unique opportunities by 	good selectivity	Reproducibility
	wide linear range	low cost

• Testing of the sensor in real-to-life media (city water and milk) demonstrates that this approach is useful and should allow us to further develop this sensor into a practical device.

Talanta Volume 193, 1 February 2019, Pages 15-22

Gold nanoparticles-based multifunctional nanoconjugates for highly sensitive and enzyme-free detection of *E.coli* K12

Yongjin Zou ^{a, b}, Jing Liang ^a, Zhe She ^{b, 1}, Heinz-Bernhard Kraatz ^{b, c} $\stackrel{ ext{ }}{\sim}$ $\stackrel{ ext{ }}{\cong}$

Show more 🧹

+ Add to Mendeley 😪 Share 🍠 Cite

https://doi.org/10.1016/j.talanta.2018.09.068

Get rights and content

