Names of God

Same-day antimicrobial susceptibility test using acoustic enhanced flow cytometry

New Method for Antimicrobial Susceptibility Testing

Register now

Mohammad Sadegh Damavandi, Ph.D. student of medical bacteriology, Department of Microbiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran

invitrogen

by Thermo Fisher Scientific

Antimicrobial susceptibility test (ASTs):

- A. To optimized antimicrobial therapy
- B. Antimicrobial resistance surveillance
- C. New antimicrobial agent discovery

Antimicrobial susceptibility test

- Most often expressed in a binary form as **sensitive** or **resistant**
- In some instances, antimicrobial susceptibility needs to be expressed as a **quantitative** measurement known as the **MIC**
- The current international AST **reference** method is the **broth microdilution** (BMD) version of the MIC
- ◆ Currently using classical culture-dependent microbiology methods that provide a susceptibility profile within **48 h**, or **longer**

Why we need faster, more accurate laboratory detection of ASTs?

- ❖ Antimicrobial resistance (AMR) is a global problem
- AMR is expected to be responsible for 10 million deaths annually by **2050**
- an estimated **30–50%** of all antimicrobial prescriptions are unnecessary (USA!!!)
- **Excessive** and otherwise **inappropriate** prescription of antibiotics promote resistance
- **❖ Serious life-threatening** infections

to address the problem of resistance could result in:

In 2015, the White House released the **National Action Plan** for **Combating Antibiotic-Resistant Bacteria**, **targeting a 50% reduction** of inappropriate antibiotic prescribing in the outpatient setting by **2020**

Flow-cytometer method of antimicrobial susceptibility testing (FAST)

Methods

Software

Data machines were designed, assembled and run using open access data-mining software (Orange v3.20, University of Ljubljana, Slovenia) [9]; under a Creative Commons license. Orange was run under Windows 10 (Microsoft, CA, USA). Statistical analysis was conducted in Prism v8 (GraphPad, San Diego, CA, USA).

7

Bacterial strains

Escherichia coli ATCC 25922, E. coli ATCC 35218, E. coli -2841 (clinical), Klebsiella pneumoniae ATCC 700603, K. pneumoniae ATCC 700603, K. pneumoniae ATCC BAA-1705, K. pneumoniae ATCC BAA-1706, K. pneumoniae ATCC 13883, Proteus mirabilis -9545 (clinical), Pseudomonas aeruginosa ATCC 27853, Staphylococcus aureus ATCC 25923, S. aureus ATCC 29213, S. aureus ATCC 33592, S. aureus -6885 (clinical), Enterococcus faecalis ATCC 29212. Clinical isolates: E. coli 1A and S. aureus 9B. Curated by Western Australian

Methods con…

Antimicrobial susceptibility series

We used commercial, custom, pre-dispensed 96-well microtitre plates containing dilution series of antimicrobial agents for standardized broth microdilution MIC

SEMPA1, containing amikacin (0.5–32 μg ml⁻¹), aztreonam (1-64 µg ml⁻¹), ciprofloxacin (0.12-8 µg ml⁻¹), colistin (0.25–32 μ g ml⁻¹), cefepime (1–32 μ g ml⁻¹), gentamicin (0.25–16 μ g ml⁻¹), imipenem (0.25–32 μ g ml⁻¹), levofloxacin (0.12-8 μ g ml⁻¹), meropenem (0.12-32 μ g ml⁻¹), piperacillin-tazobactam (1/4-64/4 μ g ml⁻¹), trimethoprim-sulphamethoxazole (0.12/2.38-16/304 μ g ml⁻¹), ceftazidime (0.5–32 μ g ml⁻¹) and tobramycin $(0.25-16 \,\mu g \,\text{ml}^{-1})$.

Enterobacterales Gram positive cocci

SEMSE3, containing amikacin (2-64 µg ml⁻¹), azithromycin (0.5–8 µg ml⁻¹), ciprofloxacin (0.12–8 µg ml⁻¹), clarithromycin (0.25–8 µg ml⁻¹), clindamycin (0.12–4 μ g ml⁻¹), cefoxitin (1-16 μ g ml⁻¹), gentamicin (0.12-4 μ g ml⁻¹), levofloxacin (0.12-8 μ g ml⁻¹), linezolid (0.5-16 μ g ml⁻¹), moxifloxacin (0.06-4 μ g ml⁻¹), norfloxacin (1-16 μ g ml⁻¹), ofloxacin (0.25–4 μ g ml⁻¹), penicillin (0.03–0.5 μ g ml⁻¹), teicoplanin (0.25-16 μ g ml⁻¹), tobramycin (0.12–4 μ g ml⁻¹) and vancomycin (0.5–16 μ g ml⁻¹).

Methods con…

Bacterial analysis:

An acoustic flow cytometer (Attune NxT, ThermoFisher Scientific, Eugene, OR, USA) was coupled to a 96 well auto sampler to generate well-by well analysis of SYTO9 nucleic acid intercalating dye (ThermoFisher Scientific, Eugene, OR, USA) -stained bacterial cells after co-incubation with a series of increasing concentrations of the antimicrobial agents.

- **A. The 96-well plate was sealed and incubated without shaking for 1 h (Enterobacterales), or 3 h (Gram-positives)**
-
- **B. 20 µl of 5 mM SYTO9 with 400 r.p.m. shaking, for 8 min**
- **C. The 96-well plate was then inserted into the flow cytometer auto-sampler for data acquisition by the flow cytometer.**

Data generation for AST

Step one data machine 1: antimicrobial unexposed population determiner

Antimicrobial-unexposed population. Antimicrobial unexposed bacteria (blue) and background particulate noise (red). antimicrobial agent-unexposed population (AUP)

Step one

Data machine 2: ordinal antimicrobial susceptibility classifier

We concatenated the unexposed bacterial suspension data with the lowest and uppermost antimicrobial-exposed bacterial suspension files.

Density histogram of antimicrobial-unexposed population (AUP, blue), and lowest (red) and highest (green) Gentamicinconcentration-exposed *E. coli* ATCC 25922.

Step one

Data machine 3: antimicrobial susceptibility classifier for predicted inhibitory concentration

A PIC was determined from the antimicrobial–bacterial combination series when a >50 % reduction in frequency **density from the AUP density curve** was observed. The PIC was then interpreted against the **2019 EUCAST** susceptibility test standards.

13

AST was performed in parallel by FAST and Sensititre broth microdilution (BMD) methods against three different classes of antimicrobial agent.

Nine Gram-negative, and five Gram-positive bacterial species

Step three Clinical application

The final version of these data machines was then used to process FAST data from new blood culture isolates

Using a 50 % fall in peak event density on the most highly ranked channels, the approximate categoric agreement between machine-learning analysis of all SEMPA1 and SEMSE3 MICs was 91.07 % when compared with proprietary flow-cytometry software (FlowJo) and 89.29 % when compared with BMD. (**BMD results fell within the same interpretive category)**

The approximate essential agreement between machine learning and proprietary software was 96.43 % and with BMD was 100%. **(3 results were within ±2 dilutions of the BMD reference value).**

Table 1. Data-machine development and calibration series, antimicrobial susceptibility test results

Table 3. Clinical isolates, single-pass antimicrobial susceptibility test results

a, BMD, broth microdilution.

b, ps, proprietary software.

c, sml, supervised machine learning.

 d , BP, EUCAST susceptible breakpoint (μ g ml⁻¹).

e, S-R, sensitive/resistant categorization.

Conclusions

Though the rapid generation of AST data by FAST is valuable in time-critical bacterial infections such as septicemia and bacterial pneumonia, it needs to be complemented by the speed and consistency offered by an automated analytical pipeline.

Currently may not be available in many clinical microbiology laboratories

In conclusion, supervised machine learning **enabled** us to determine AST classifications **without** the high-end analytic skills of an expert flow-cytometer user or dedicated flow cytometry analytic software.

The combination of machine learning with the FAST method generated same-day AST results and has the potential to aid early **antimicrobial treatment decisions**, Surveillance and detection of resistance.

Supported by

ThermoFisher
SCIENTIFIC

Categories

Accelerating Science Behind the Bench General FAST: Flow Cytometry-Assisted Antimicrobial Susceptibility Testing

FAST: Flow Cytometry-Assisted Antimicrobial Susceptibility **Testing**

By Behind The Bench Staff 02.25.2019

Dr. Tim Inglis shares with us his findings on FAST methods of antibiotic resistance detection and most recently, on flow cytometry-assisted antimicrobial susceptibility testing using the Attune NxT Flow Cytometer.

18

Tim Inglis, Ph.D.

