

Congenital Hypothyroidism

M.Hashemipour MD

Congenital Hypothyroidism

- Because newborns are asymptomatic at birth, screening programs developed worldwide
- One of the commonest treatable causes of mental retardation

congenital hypothyroidism

- 1:4 · · · newborns
- inverse relationship between age at diagnosis and IQ
- Most newborn with CH no clinical manifestations of thyroid deficiency
- Diagnosis is based on newborn screening programs by heel-stick

Etiology

- ∧۵ percent sporadic
- 10 percent hereditary

Major Causes of Congenital Hypothyroidism and their Approximate Frequency

Cause	Frequency	
Thyroid dysgenesis — ectopia, aplasia, or hypoplasia	1 :4500	
Inborn errors of thyroxine synthesis (dyshormonogeneses)	1:30,000	
Maternal antibody-mediated hypothyroidism	1:25,000-1:100,000	
Central hypothyroidism	1:25,000-1:100,000	
Transient hypothyroidism		
Europe — iodine deficiency	1:100	
North America — autoimmune thyroiditis; iodide excess	1:50,000	
Thyroxine-binding globulin deficiency — causes low serum T4 concentrations but not hypothyroidism	1 :4300	

Thyroid dysgenesis

- Agenesis
- > Hypoplasia
- > Ectopy Two-thirds

Most cases sporadic

Some cases familial/genetic

Dyshormonogeneses

Autosomal recessive

- >iodide transport
- > Thyroid peroxidase
- > Production of abnormal thyroglobulin
- > lodotyrosine deiodinase deficiency
- Defect in thyroid peroxidase impaired iodide oxidation and organification

Central hypothyroidism

Associated with

- Septo-optic dysplasia
- Cleft lip
- Cleft palate
- Birth trauma
- Asphyxia

Central hypothyroidism

- Other pituitary hormone deficiencies
- Hypoglycemia or micropenis

Clinical Manifestations

- Within T month of birth %T.
- Within \7 month of birth \7\8
- Birth length and weight are normal
- head circumference may be increased. The absence of knee epiphyses occur in males than females (* versus * percent
- Occasionally lethargy, slow movement

Clinical Manifestations

- Hoarse cry
- Feeding problems
- constipation
- macroglossia
- umbilical hernia
- Large fontanels, hypotonia
- Dry skin
- Hypothermia
- Prolonged jaundice

Newborn Screening Programs

- Blood is collected onto filter paper cards after heel prick
- Three to five days after delivery
- Some programs obtain a second specimen between two and six weeks

Diagnostic Studies

At recall

- Infant should be examined
- Blood sample for confirm hypothyroidism

Confirmation Diagnosis

Normal Values For TSH

After the first four weeks

•/۵ to

† mU/L

Adult range at about two years of age

Up to date ۲۰۱۸ ■

Concentrations of free T^{γ} , T^{γ} , T^{γ} , and TSH in preterm and term infants, in cord blood at birth and at \forall , \forall , and \forall days of age (mean \pm \forall SD)

gestation (weeks)	Age of infant	Free T [¢] (ng/dL)	T [¢] (microgram/dL)	T۳ (ng/dL)	TSH (mU/L)
23-27 weeks	Cord	1.28 ± 0.4	5.4 ± 2.0	20 ± 15	6.8 ± 2.9
	7 d	1.47 ± 0.6	4.0 ± 1.8	33 ± 20	3.5 ± 2.6
	14 d	1.45 ± 0.5	4.7 ± 2.6	41 ± 25	3.9 ± 2.7
	28 d	1.50 ± 0.4	6.1 ± 2.3	63 ± 27	3.8 ± 4.7
28-30 weeks	Cord	1.45 ± 0.4	6.3 ± 2.0	29 ± 21	7.0 ± 3.7
	7 d	1.82 ± 0.7	6.3 ± 2.1	56 ± 24	3.6 ± 2.5
	14 d	1.65 ± 0.4	6.6 ± 2.3	72 ± 28	4.9 ± 11.2
	28 d	1.71 ± 0.4	7.5 ± 2.3	87 ± 31	3.6 ± 2.5
31-34 weeks	Cord	1.49 ± 0.3	7.6 ± 2.3	35 ± 23	7.9 ± 5.2
	7 d	2.14 ± 0.6	9.4 ± 3.4	92 ± 36	3.6 ± 4.8
	14 d	1.98 ± 0.4	9.1 ± 3.6	110 ± 41	3.8 ± 9.3
	28 d	1.88 ± 0.5	8.9 ± 3.0	120 ± 40	3.5 ± 3.4
≥37 weeks	Cord	1.41 ± 0.3	9.2 ± 1.9	60 ± 35	6.7 ± 4.8
	7 d	2.70 ± 0.6	12.7 ± 2.9	148 ± 50	2.6 ± 1.8
	14 d	2.03 ± 0.3	10.7 ± 1.4	167 ± 31	2.5 ± 2.0
	28 d	1.65 ± 0.3	9.7 ± 2.2	176 ± 32	1.8 ± 0.9

Low T* & Elevated TSH

■ TSH>\\mU/lite

At two weeks ,We should think to CH

J Clin Endocrinol Metab, ۲۰۱۱

TSH>\mU/lite

Normal T^{*} & Elevated TSH

- TSH>\·mU/lit

Subclinical hypothyroidism

J Clin Endocrinol Metab, Y+11

When TSH is abnormal?

Before Y wk of age After Y wk of age

indicative of primary CH

Indian J Pediatr ۲۰۱۸

Confirmatory Serum Thyroid Test

TSH ≥ Y · mU/L

 $T^{\varphi} < \wedge \mu g/dL$

FreeT^r<·/^ng/dl

Considered as hypothyroid

J Clin Endocrinol Metab, Y . 1 1

Korean J Pediatr Y 10

Horm Res Paediatr Y • 15

Secondary Hypothyroidism

■ TSH<9mU/lit

fT۴< • / \^ng/dl

■ T⁴<∆ug/dl

Secondary hypothyroidism

J Clin Endocrinol Metab, Y+11

Normal T^{*} & Elevated TSH

- Down syndrome
- Hyperthyrotropinemia persists until \\
 vears of age or later.

Persistent Elevated TSH

- Persistent ①TSH > \ miU/L
- Should be treated

AAPY • • 9

TBG deficiency

TSH<9mU/lit</p>

$$fT^{\epsilon} = \frac{1}{\sqrt{N-1}} \frac{\pi g}{dl}$$

- T⁴<∆ug/dl</p>
- Tr Ru rr% to rr%

>40%

J Clin Endocrinol Metab, Y. 11

low T' & nor or low TSH

- Central hypothyroidism.
- Premature infants
- Non thyroidal illness
- ↓ Thyroxin-binding globulin (TBG)
- Birth asphyxia
- Anticonvulsants
- High-dose glucocorticoids

Except central hypothyroidism

Treatment of these infants may do more harm than good

A low T and normal TSH

seen in 5% of neonates

Request a second blood sample for measurement

- TSH
- ■T^r resin uptake
- FreeT

primary TSH and VLBW

- An average age for TSH rise is ** days (<13** g)</p>
- All VLBW infants should be rescreened at ۲, ۶, and ۱ weeks of age
- until they weigh more than

10. g.

Or Recheck at ⁴ weeks

Thyroid radionuclide uptake

Not recommend routinely in infants with TSH>▷·mu/l are useful

Thyroid Radionuclide Uptake

It Should Be done Within

The First Week After Starting Treatment

Treatment Should Never Be Delayed
To Obtain Scan

Clinical Management

- Education of parents
- Etiology of CH
- lack of correlation of parental lifestyle during pregnancy with causes of the disease
- Benefit of early diagnosis
- Appropriate manner in which TH is administered
- Importance of adherence to the treatment plan
- Importance of periodic follow-up care

Treatment

 Treatment should begin as soon as possible, preferably within the first two weeks of life

Goal Of Treatment

To Ensure Normal Growth & Development

TSH

- Free T⁶ 1/⁶ to ⁷/⁷ ng/dl

- Up to date Y · \ \ \
- PEDIATRIC RESEARCH Y . . 9
- Orphanet Journal of Rare Diseases Y. Y.

Who Should Be Treated

Normal T[¢] &Elevated TSH

If the serum TSH(>\\MIU/L) has not normalized by \(\frac{\gamma}{-} \gamma \) week of age
we recommend treating

- J Clin Endocrinol Metab, Y · Y
- Up to date Y+1A

Who Should Be Treated

- If the initial TSH is greater than **
 mU/liter
- we also recommend starting thyroid hormone treatment with any T^r level
- J Clin Endocrinol Metab, ۲۰۱۱
- Up to date Y+1A

Who Should Be Treated

if serum TSH is elevated \\.-\.\.mU/liter with normal FT\(^{\gamma}\)

■ Recheck a serum TSH and free T⁶ in 1-1
wk.

we recommend treating

If the serum TSH has not normalized>\(\cdrt\)

Up to date Y+1A

Who Should Be Treated

- TSH is, f to \ mIU/L
- repeating a serum TSH and free T^e in one week
- Some neonates will normalize
- if the serum TSH does not normalize by four to six weeks of age with low T⁶
- we recommend starting thyroid hormone treatment. As secondary hypothyroidism

AAP recommends levothyroxine

A-1 Yug/kg in most babies

Infants with very low T[¢] (<\delta\$ ug/dL)or FT[¢]
\tau^\epsilon\$ ng/dL

should receive \tau^\delta\$ to \tau\$ mcg/kg/day

Levothyroxin dose should be adjusted according to the infant's

- Clinical response
- TSH
- FTΥ
- **T**4

Thyroxin tablets can be crushed daily, mixed with a few milliliters of water, breast milk, or formula

- A failure of the T[¢] to increase into the upper half of the normal range by V weeks after initiation of I-thyroxin administration
- should serve to alert the physician that the child may
- > TBG deficiency
- preparation of I-thyroxin is not appropriately active
- absorption of I-thyroxin is incomplete
- > child is not receiving the medication

Lab evaluation

should be determined at least ⁶ h after the last L-T ⁶ administration

Failure of treatment

- FT_{*} to increase into the upper half of the reference range('ng/dL) by ' weeks
 and/or
- TSH to decrease to less than Y mU/L within Y weeks after initiation of L-T_y

J Clin Endocrinol Metab, Y•17

Failure of treatment

Should alert the physician that the child

may not be receiving adequate L-T_{*}

J Clin Endocrinol Metab, YOUT

Interfere With The Absorption

- Soy Formulas (within an hour)
- Ferrous Sulfate
- Aluminum Hydroxide
- Bile Acid Sequestrants
- Calcium
- infant "colic" drops (<u>simethicone</u>)

Premature

 Currently the evidence base does not indicate cognitive benefit from thyroid therapy of hypothyroxinemia of prematurity in the absence of TSH elevation.

AAPY • • ?

Monitoring

Recheck T[¢], TSH

- Y to Y weeks after initial treatment is begun
- Every \ to \ months in the first \(\gamma \) months
- Every ^γ to ^γ months between ^γ months and ^γ years of age
- Every f to \f months from f years of age to end of growth

AAPT ... 9

Monitoring

At More Frequent Intervals When Compliance Is

Questioned Or Abnormal Values Are Obtained

 Lab Test Should Be Performed Y -YWeeks After Any Change In Thyroxin Dosage

FOLLOW-UP

Routine clinical examination, including

- Assessment of growth and development, at regular intervals
- Approximately every few months during the first \(\gamma \)
 years of life
- Infants with CH have risk for other congenital anomalies, which occur in \ \ % of these infants as compared to \ γ % in the general population

FOLLOW-UP

- CHD
- Hearing Screening
- visual processing problems
- speech delay

prognosis

During The First Year Of Life, Infants With

- T^φ < 1 ⋅ Ug/di
- Accompanied By TSH > 10 Mu/L

Have Lower IQ Values Than infants
Whose T[¢] Levels Were Held
Constant At Higher Concentrations

AAPY . . 9

prognosis

An optimal cognitive outcome depends or both

- Adequacy of treatment
- Timing of postnatal therapy particularly in severe cases of CH (T^γ < ω ug/dL)</p>

Prognosis

Infant With

- Initial T[¢] Level < Δμg/DI
- Delay Skeletal Maturation At Birth.

Have Permanent Intellectual Sequelae

Prognosis

During treatment

■ four or more episodes TSH (>۵ mU/L) after the age of ⁹ months associated with school delay

AAPY • • 9

Normal Psychomotor

- Severe CH Can Achieve Normal Psychomotor Development At 1. To 7. Months
- If Treatment Is Initiated Before \(\gamma \) Days of Age And An Initial Dose of > \(\gamma \) \(\mu \) μg/Kg/Day Is Used
- If Treatment Is Delayed or A Lower Dose Is Used, A * Point Deficit In Both Mental And Psychomotor Development Is Observed

At Years Of Age

Serum TSH levels above \ \ \ \ \ \ \ mU/L on at least \ \ \ occasions

or

 if sTSH was above Y*/* mU/L in a single blood collection

- Cases in which serum TSH values ranged between Ar and 1/1 mU/L with normal FT* were considered indicative of persistent hyperthyrotropinemia, not requiring the reintroduction of treatment
- Needs follow up

- Transient CH was diagnosed if serumTSH was below ۵/+ mU/L with normal FT⁹ at least in two occasions
- Patients with initial HT that subsequently showed serum TSH below by mU/L on at least "consecutive blood collections were classified as affected by transient CH

During treatment if Serum TSH> \ mU/L
 after the first year of life

- AAP199T
- Up to date ۲۰۲۱

if

- initial thyroid scan shows ectopic
- Confirmed by ultrasonographic examination

If the results of thyroid function tests are inconclusive, careful follow-up and subsequent retesting are indication

Transient hypothyroidism

Up to date ۲۰۲۱

Transient hypothyroidism

- Large hepatic hemangiomas increased type τ deiodinase, resulting in "consumptive hypothyroidism"
- The hypothyroidism resolved by 17 months of age as the hemangioendothelioma regressed

Up to date ۲۰۲۱

if

 initial thyroid scan shows ectopic/absent gland confirmed by ultrasonographic examination

Transient conditions

- Postnatal iodine exposure is * times more common among premature
- Newborn whose mother is receiving an antithyroid drug. T[¢] and TSH values return to normal within ¹ to [∀] weeks

 it is impossible to determine whether the hypothyroidism is permanent or transient.

Overtreatment

FT^F above ^{T/F} ng/dL more than ^T weeks

- Craniosynostosis
- Disturbed sleep
- Behavior problem
- Hyperactivity
- Cognitive development
- Attention deficit

نوزاد مبتلا به سندرم دان در چه زمان هائی باید ازمایش تیروئید در این ها انجام شود

- اسکرین
- دو هفتگی
- دو ماهگی
- ح هر ۶-۱۲ ماه تا سه سالگی

Concentrations of free T^{γ} , T^{γ} , and TSH in preterm and term infants, in cord blood at birth and at \forall , \forall , and \forall days of age (mean \pm \forall SD)

خدایا چنان کن سر انجام کار

تو خوشنود باشی و ه رستگار

