

Complete Blood Count

Ghanavat Majid
Assistant Professor of Medical University of Isfahan
Pediatric oncologist & Hematologist

CBC COMPONENTS

- Red Blood Cells (RBCs)
- Hematocrit (Hct)
- Hemoglobin (Hgb)
- Mean Corpuscular Volume (MCV)
- Mean Corpuscular Hemoglobin(MCH)
- Mean Corpuscular Hemoglobin
- Concentration (MCHC)
- Red cell distribution width (RDW)
- White Blood Cells (WBCs)
- Platelets
- Mean Platelet Volume (MPV)

RBC

- > Transport hemoglobin which carries oxygen from the lung to tissues throughout your body
- Produced in the bone marrow and stimulated by erythropoietin which is made in the kidneys

M: ^φ/^γ · to ^Δ/^Λ · m/uL

F: ٣/٨ · to Δ/۲ · m/uL

HEMOGLOBIN AND HEMATOCRIT

Hemoglobin:

M: $1^{\epsilon}/\cdot$ to 1^{ϵ} gm/dL

F: 17 to 18 gm/dL

Hematocrit: Percentage of the

volume of whole blood that is made

up of red blood cells. (Hint: Hb $x \Upsilon$)

M: ⁶Υto ⁶Υ %

F: ٣۶ to ۴۸ %

MCV and MCH

- $ightharpoonup MCV = mean corpuscular volume HCT/RBC count= <math>\Lambda \cdot 1 \cdot \cdot \cdot fL$
 - small = microcytic
 - normal = normocytic
 - large = macrocytic
- ► MCH= mean corpuscular hemoglobin Hb/RBC count= ۲۷-۳۴ pg
 - decreased = hypochromic
 - normal = normochromic
 - Increased = hyperchromic

MCHC and RDW

- MCHC = mean corpuscular hemoglobin concentration Hb/HCT = ٣٢- ٣۶ gm/dl
- > RDW = red cell distribution width It is correlates with the degree of anisocytosis or variation in red blood cell width.

 Normal range from 1.-10%

Hemoglobin

Elevated

- Primary erythrocytosis
- -Polycythemia Vera
- Secondary erythrocytosis
- -Chronic hypoxia(COPD, heart disease, highaltitude)
- -Elevated erythropoietin due to malignancy

Low

• Anemia

DEFINED:

Anemia can be defined as:

- 1. reduction in hemoglobin concentration
- Y. hematocrit, or
- T. number of red blood cells

Birth	16.5	13.5
2 weeks	16.5	12.5
2week_3months	11.5_16.5	9(Term) 7(Preterm)
3–6 months	11.5	9.5
6month_6years	12	10.5
6–12 years	13.5	11.5
12–18 years Female	14	12
12_18years Male	14.5	13

How to Approach Anemia

- Decreased production of RBC's
- ex. bone marrow failure, nutritional deficiencies
- > Increased destruction of RBC's
- ex. hemolysis
- > Loss of RBC's
- ex. bleeding

MICROCYTIC ANEMIA

The 3 major diagnostic possibilities for microcytic amaenia are:

- Iron deficiency anemia (IDA),
- Thalassemia,
- Anemia of chronic disease (ACD)

IDA

RBC: normal or low

Hb: low

MCV: low

• RDW: high

Thalassemia

RBC: normal or high-

Disproportionate !!!

Hb: low

MCV: low

• RDW: normal

An extremely low MCV may suggest Alpha – thalassemia !!!

Mentzer index

- Is used to differentiate IDA from Bthalassemia.
- MCV / RBC : is < 13, thalassemia is more likely.
- If the result > 14, then iron-deficiency anemia is more likely.

ACD

- RBC: normal or low?
- Hb: low
- MCV: normal
- RDW: normal

Anemia of Chronic Disease(AOCD)

- Thyroid diseases
- Malignancy
- Collagen Vascular

Disease

- -Rheumatoid Arthritis
- -SLE
- -Polymyositis
- -Polyarteritis Nodosa

- IBD
- Ulcerative Colitis
- Crohn's Disease
- Chronic Infections
- HIV, Osteomyelitis
- Tuberculosis
- Renal Failure

3. Classification and diagnosis of anemia in children and neonates

Classification of Anemia

Blood smear

Hypochromic microcytic

MCV low (red cell size <70 fL)

Iron-deficiency anemia
Thalassemia, α or β
Sideroblastic anemia
Chronic disease
Infection
Cancer
Inflammation
Renal disease
Lead toxicity
Hemoglobin E trait
Atransferrinemia
Inborn errors of iron
metabolism
Copper deficiency
Severe malnutrition

Macrocytic+

MCV high (red cell size >85 fL)

Normal newborn Increased erythropoiesis* Postsplenectomy Liver disease** Obstructive jaundice** Aplastic anemia Hypothyroidism Megaloblastic anemias Down syndrome Syndromes with elevated Hb F Myelodysplastic syndromes Diamond-Blackfan anemia Fanconi anemia Pearson syndrome Paroxysmal nocturnal hemoglobinuria Drugs (methotrexate, mercaptopurine, phenytoin) Normocytic

MCV normal (red cell size 72–79 fL)

Acute blood loss
Infection
Renal failure
Connective tissue disorder
Liver disease
Disseminated malignancy
Early iron deficiency
Aplastic anemia
Bone marrow infiltration
Dyserythropoietic anemia
Hemolysis
RBC enzyme deficiency
RBC membrane defects
Hypersplenism
Drugs

White Blood Cells (WBC)

- ➤ WBCs are involved in the immune response
- \triangleright The normal range: $\Upsilon/\Delta = 1 \cdot /\Delta \times 1 \cdot ^9$ K/L
- > Two types of WBC:
 - 1) Granulocytes consist of:
 - Neutrophils: Δ· V·%
 - Eosinophils: \ \ \alpha\%
 - Basophils: up to \%
 - Y) Agranulocytes consist of:
 - _ Lymphocytes: Y · * · %
 - − Monocytes: \ ۶%

Age	TotalWBC (Range)	Neutrophils%	Lymphocyte%
Birth	9-30,000	60%	40%
24h-6Mo	5,000 -17,000	30-45%	40-60%
6Mo-6Year	5,000-14,000	30-50%	40-60%
6-16Year	4500-11,000	50-60%	30_40%

Neutrophil

Neutrophilia – an increase in neutrophils

- Bacterial infections
- Tissue destruction (burns)
- Inflammation (SLE, RA, UC)
- Thyrotoxicosis
- Cigarette smoking
- Corticosteroids
- Leukemia

Neutropenia

```
Mild neutropenia: ANC \'···- \\alpha ···
```

Moderate neutropenia: ANC Δ···- · · · · ·

Severe neutropenia: ANC less than $\Delta \cdots$

Agranocytosis: ANC Less than Y...

Neutrophil

Neutropenia – a decrease in neutrophils

- Decreased bone marrow production
- Medications (ex. dapsone, cephalosporins)
- Immune related (ex. SLE, RA)
- Post acute infection (HSV, CMV, HIV, EBV)

Eosinophil

- > Eosinophilia: increased eosinophil count
 - Parasitic infections
 - Allergic conditions and hypersensitivity reaction
 - Aspergillosis
 - Vasculitis
- > Eosinopenia : decreased eosinophil count
 - Sepsis

Lymphocyte

- Lymphocytosis increased lymphocyte count
 - -Viral infection (EBV, CMV, HIV, Infectious)mononucleosis
 - -Leukemia/Lymphoma (CLL)
- > Lymphopenia decreased lymphocyte count
 - -Viral infections
 - -Medication induced
 - -Autoimmune disorder

Monocytes

- Monocytosis
- -Pregnancy
- -TB
- -Syphilis
- -Sarcoid

- Monocytopenia
- Acute infection
- Steroids
- -Leukemia

Platelets

- Platelets/thrombocytes principal function is to prevent bleeding
- The normal range is 12.-4.. K/UL

Platelets

Increased (Thrombocytosis)

- Splenectomy
- Inflammation(Reactive)
- Myeloproliferative disease (ET)
- Iron deficiency anemia

Decreased (Thrombocytopenia)

- TTP, DIC, ITP, HIT
- Blood loss
- Splenomegaly
- Medications (antibiotics)
- Viral Infections
- ETOH abuse
- Bone marrow disorder (leukemia)

