

Protein Excretion

- Normal range protenuria in children is :
- (≤♥ mg/m[™]/hr) or (< \ · · · mg/m²/day) or totaly \ △ · mg/d

* Abnormal($f - f \cdot mg/m^{\gamma}/hr$) or ($1 \cdot \cdot \cdot < & < 1 \cdot \cdot \cdot mg/m^{2}/d$)

* Nephrotic(>f · mg/m⁷/h) or (> \gr/m²/day)

Abnormal Protein Excretion

Urinary protein excretion > \(\cdots \) mg/m²/day is abnormal in children.

In neonates, is higher, up to mg/m²/day,
(reduced reabsorption of filtered proteins.)

Nephrotic range proteinuria (heavy proteinuria) is
 Urinary protein \ g/m²/day or > △ · mg/kg/day

low urinary protein excretion

1. Restriction of the filtration of proteins across the glomerular capillary wall.

Reabsorption of freely filtered low molecular weight (LMW) proteins (< Yひ・・・ Daltons) by the proximal tubule.

Mechanisms

- 1. Glomerular
- Y. Tubular
- r. Overflow proteinuria

Proteinuria in children presents in three ways

- \. Transient or intermittent
- Orthostatic
- or. Persistent

Transient proteinuria

↓ Most common cause

Fever, Exercise, Stress, Seizures, and Hypovolemia, or Exposure to extreme cold, act by altering renal hemodynamics.

Transient proteinuria

Follow-up routinely

Repeat U/A on a first morning void in one year

Increased protein excretion in the upright position (to '--fold) which returns to normal in the supine position.

Common cause of proteinuria, in adolescent boys.

•Generally <1 g/day.

★The disorder is uncommon over the age of
Y
years.

*The diagnosis by a negative dipstick *on the first morning* voided specimen.

■ A short period () to Y minutes) of maximal exercise increased *Pr/Cr* ratios.

It is wise to **delay measurement**, for a period of **hours** after exercise.

Pathogenesis

Exaggeration normal response of transient increase protein in upright posture.

- Subtle glomerular abnormalities.

Renal vein compression by aorta or superior mesenteric artery.

Prognosis

Benign condition, normal renal function after as long as 3, y of follow-up.

The *proteinuria* resolves *spontaneously*, being present $\delta \cdot$ percent at $\delta \cdot$ years and only percent at $\delta \cdot$ years.

Glomerular proteinuria

- Minimal change disease
- Focal segmental glomerular sclerosis
- Membranoproliferative glomerulonephritis
- Membranous nephropathy
- Congenital nephrotic syndrome
- *IgA nephropathy (Berger's disease)
- * Alport syndrome

Large proteins are able to pass by the abnormal glomerular barrier.

Tubular Proteinuria

low molecular weight proteins such as β^۲-microglobulin, α¹-microglobulin, and retinolbinding protein.

- Filtered across the glomerulus and reabsorbed in the proximal tubule.
 - Associated with other defects in proximal.tubular .. function(glycosuria,RTA), and ...phosphaturia).

Malfunctioning **tubules** unable to reabsorb the smaller proteins filtered at the glomerulus.

Tubular proteinuria

- Fanconi syndrome
- Heavy metal poisoning
- Acute tubular necrosis
- Tubulointerstitial nephritis
- Secondary to obstructive uropathy

Overflow Proteinuria

 Overproduction of a particular protein >tubular reabsorptive capacity.

 Primarily in adults with a plasma cell dyscrasia (multiple myeloma) Hemolysis, Rhabdomyolysis.

 Filtered load of proteins exceeds the tubular reabsorption rate (glucosuria in hyperglycemia)

MEASUREMENT OF URINARY PROTEIN

Qualitative

- Urine dipstick
- Sulfosalicylic acid test

Quantitative

- timed 24-hour urine collection
- measurement of the urinary protein/creatinine ratio

Urinalysis Strips

Results

Negative

- ■Trace : between \alpha and \alpha mg/dL
- + : between ** and ** mg/dL
- ** between ** and ** mg/dL
- *+: between *** and *** mg/dL
- ***+: >) · · ·** mg/dL

False-Negative

- Dilute urine (specific gravity < \ · · △)
- Urinary protein is not albumin

False-Positive

- Highly concentrated urine (SG > 1・Y۵)
- Gross hematuria
- Urinary pH > \/ \.
- Contaminated by antiseptic agents (chlorhexidine, benzalkonium chloride, hydrogen peroxide)
- Phenazopyridine
- lodinated radiocontrast

- \Δ times more common in children than adults
- Incidence ⇒

T-T/1++++ children /year

- -Heary proteinuria
- -Hypoaluminemia

(<Y/0g/dl)

- –*Edema*
- -Hyperlipidemia

Etiology

Pathophysiology

- -tedIn permeability of the GCW
- Loss of negatively charged glycoproteins within the GCW
- -In FSGS → Plasma factor

Mechanism of Edema Formation

- -Urinary protein loss
- -Activating the RAAS
- -Release of ADH

Edema Mechanism

Massive proteinuria leads to decreased serum proteins, especially albumin.

- Plasma oncotic pressureis diminished.
- leading to fluid shifts from vascular to interstitial compartments and plasma volume contraction.

Edema

Reduction in effective circulating blood volume

Increase in tubular Nacl reabsorption secondary to activation of RAAS system.

Nephrotic syndrome

Pitting Edema

Mechanism of Hyperlipidemia

-Hypoalbuminemia-Lipoprotein lipase

Hyperlipidemia

Hypoproteinemia stimulates hepatic lipoprotein
 synthesis & diminishes lipoprotein metabolism(LPL)

■Elevated serum lipids (cholesterol, triglycerides) and lipoproteins.

Idiopathic Nephrotic Syndrome

- -In minimal change disease
- -Glomeruli ⇒ NI or minimal increase in mesangial cell & matrix

In mesangial proliferation

- -Diffuse increase in mesangial cells & matrix on LM.
- -Trace to \+mesangial IgM and/or IgA staining on IF.
- -1ed numbers of mesangial cells & matrix & effacement of the epithelial cell foot processes on Exercises

In FSGS

Mesangial proliferation & segmental scarring on LM.

IgM &CT staining in the areas of segmental sclerosis on IF.

Segmental scarring of the glomerular tuft with obliteration of the glomerular capillary lumen HIV infection, VUR, IV heroin abuse.

Clinical Manifestations:

 $M: F \Rightarrow f: f$ (ages of $f \in fyr$)
Infection, insect bites, bee stings, poison IVY

- -Edma
- -Anorexia
- Irritability
- -Abdominal pain

- -Diarrhea
- –HTN & Grosshematuria(Uncommon)

Differential diagnosis

- -Protein-losing enteropathy
- -Hepatic failure
- -CHF
- -Acute or chronic GN
- -Protein malnutrition

Diagnosis:

- -U/A⇒ ۲+or ۴+ Proteinuria microscopic hematuria (۲⋅%)
- -Y[¢]h urine for protein ⇒ [¢]· mg/m[†]/hr
- -Spot urine protein to creatinine ratio ⇒ Y/·
- -Serum albumin ⇒ < Y/\dg/dl
- -TG& cholesterol levels are elevated
- -CT & CF level are NL

Treatment

- -Low salt diet
- -Fluid restriction (hyponatremia)
- -Albumin
- -Prednisolone ⇒
 - F.mg/mt/day (FWK)
 - ۴·mg/m٢/day (QOD)

- **≻**Relapse
- >Steroid dependent
- > Frequent relapsers
- >Steroid resistant

Cyclophosphamide (Y-Ymg/kg/day)

Cyclosparine (Y-8mg/kg/day)

ACE-I& Angiotensin II blockers

Indications of Hospitalization:

- -Severe symptomatic edema
- -Large pleural effusions
- -Ascites
- -Severe genital edema

Indications of Renal Biopsy:

- -Hematuria
- **HTN**
- -Renal insufficiency
- -Hypocomplementemia
- $-Age < yr or > \lambda yr$

Complications:

-Infection

- -Urinary lasses of Igs & properdin factor B
- -Defective cell- mediated immunity
- -Immunosuppressive therapy
- -Malnutrition
- -Edema/ascites
- -Thromboembolic events

Prognosis:

- $-Age > \lambda yr$
- HTN-
- -Hematuria
- -Renal dysfunction
- -Extra renal symptomatology (rash, arthralgia, etc)
- -Depressed serum complement

Secondary Nephrotic syndrome

-MNP

-MPGN

-PIGN

-Lupus nephritis

-HSPN

Secondary Nephrotic syndrome

- -Malaria
- -Schistosomiasis
- -Hepatitis B virus
- -Hepatitis C virus
- -Filaria
- -Leposy
- -HIV

-Carcinomas of the lung &

GI tract ⇒ M/NP

-Hodgkin lymphoma ⇒ MCD

-Penicillamine, Captopril, Gold, NSAIDs,

Mercury Compounds ⇒ MNP

-Probenecid, Ethosuximide, Methimazole,

Lithium → MCD

-Procainamide, Chlorpropamide, Phenytion,

Trimethadione, Paramethadione ⇒ MPGN

