

Welcome

21st International Congress of Endocrinology

in conjunction with the 14th Emirates Diabetes and Endocrine Congress

This is ICE 2024 for you!

Endocrinology of the Future

2024

21st International Congress of Endocrinology
1-3 March 2024 | Dubat UAE

12 Plenary Sessions

68 Symposia

27 Meet the Professors

10 Regional Sessions

6 Workshops

+5,000 Attendees 98 Countries

408 Abstracts on Viewing

44 Oral Presentations

65 Poster Presentations

29 Corporate Partners

19 Industry Symposia

3 Product Theatres

ISE Board members

2024

Syed Abbas Raza (Pakistan) President Mar 2022 - Oct 2024

Alvin Powers (USA) Secretary Mar 2022 - Oct 2024

Hirotaka Shibata (Japan) Treasurer Mar 2022 - Oct 2025

Helena Teede (Australia) **President-Elect** Oct 2023 - Oct 2024

Susan Mandel (USA) Secretary-Elect Oct 2023 - Oct 2024

Fatheya Al Awadi 2020 - 2024 (UAE)

Vivien Lim 2020 - 2024 (Singapore)

Ayesha Motala 2020 - 2024 (South Africa)

Pedro Nel Rueda Plata 2020 - 2024 (Colombia)

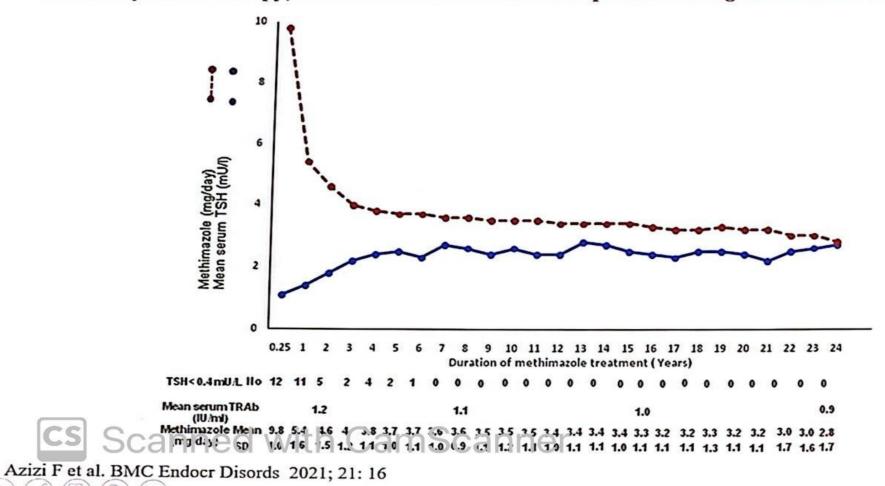
Hiroshi Arima 2022 - 2025 (Japan)

Jean-Patrice Baillargeon 2022 - 2025 (Canada)

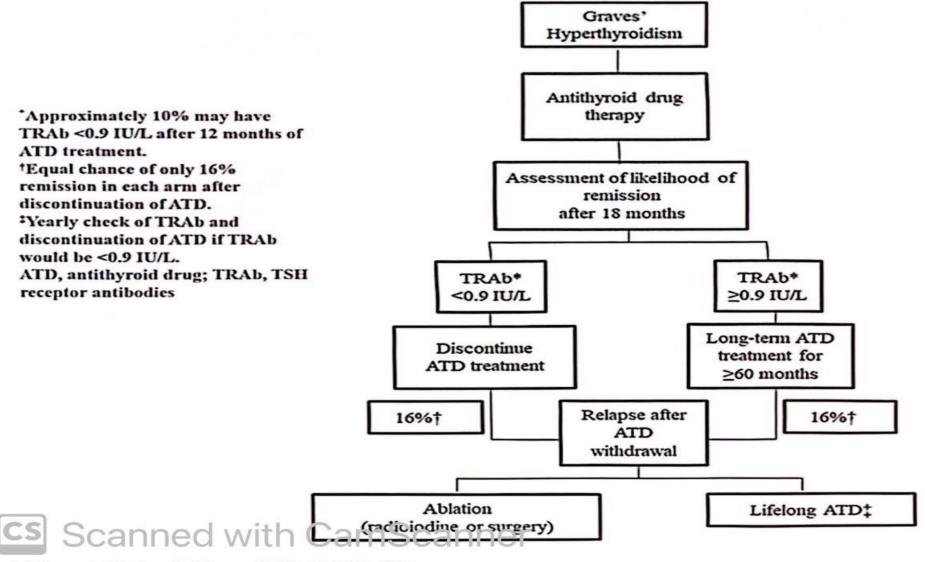
(UK)

(India)

Barbara McGowan 2022 - 2025 (UK)



Mark Sherlock 2022 - 2026 (Ireland)


Control of Graves' hyperthyroidism with very longterm methimazole treatment: a clinical trial

Fereidoun Azizi ¹, Hengameh Abdi ², Atieh Amouzegar ³

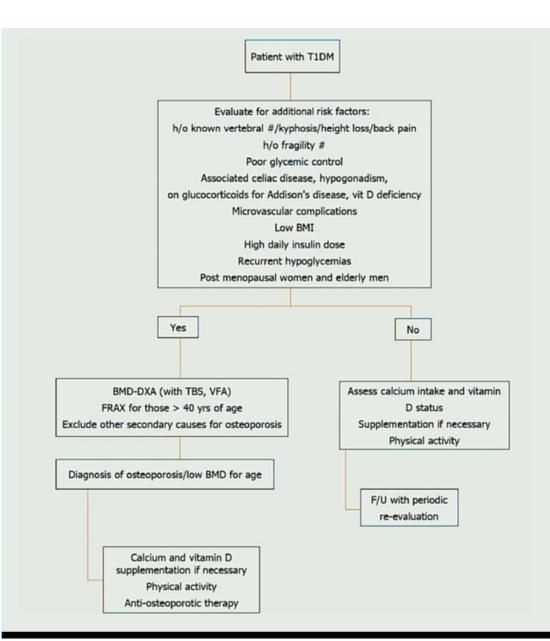
All 27 patients continued therapy for at least 15 years, 16 patients until 20 years and 11 patients until 24 years. Daily doses of methimazole to maintain euthyroidism decreased to mean of 3.4 ± 1.0 and 2.8 ± 1.7 mg daily, by 15 and 24 years of therapy; serum TRAb was normal in all patients during methimazole treatment

Management and monitoring steps during long-term ATD treatment of Graves' disease

Azizi F, et al. J Endocrinol Invest 2022; 45: 1139-1150

Practice points

- •Antithyroid drugs are the treatment of choice for Graves' disease.
- To avoid relapse of hyperthyroidism, long-term (more than five years) treatment with antithyroid drugs are advised.
- •The majority of patients with Graves' disease have less likelihood of relapse and benefit from long-term antithyroid drug treatment.
- •Long-term methimazole therapy is associated with cure of hyperthyroidism in more than 80% of patients.
- •Long-term therapy with methimazole in adults does not cause additional major adverse events.


 CS Scanned with CamScanner

Azızı F et al. Best Pract Res Clin Endocrinol Metab 2022; 101631

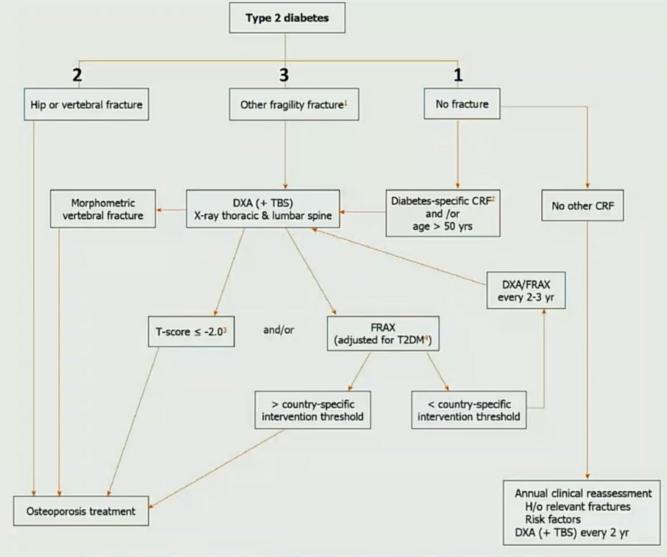
Save thyroid, do not ablate

low dose MMI treatment may be prescribed effectively, even throughout the patients' life for those with Graves' hyperthyroidism who do not desire ablation treatment. Low cost, safe and effective drugs are prescribed as lifelong therapy for some specific diseases, such as epilepsy, inflammatory bowel disease and hypothyroidism and MMI may be added to the list of lifelong drugs for control of Graves' hyperthyroidism.

CS Scanned with CamScanner
Azizi F et al. BMC Endocrine Disorders 2021: 21: 16

Algorithm for evaluation of bone health in type 1 diabetes mellitus

POINTS:


- In adult patients with T1DM, the first densitometry should be performed five years after the diagnosis of the diabetes mellitus and repeated every 2–5 years.
- The FRAX tool is not appropriate for assessing the fracture risk in young patients with T1DM.

BMI: Body mass index; BMD-DXA: Bone mineral density by dual energy X-ray absorptiometry; F/U: Follow up; FRAX: Fracture Risk Assessment Tool:

H/o: History of; T1DM: Type 1 diabetes mellitus; TBS: Trabecular bone score: VFA:Vertebral fracture assessment.

Critical review of bone health, fracture risk and management of bone fragility in diabetes mellitus.

Palui R, Pramanik S, Mondal S, Ray S. World J Diabetes 2021; 12(6): 706-729

Evaluation of fracture risk in patients with type 2 diabetes mellitus

- 1. ≥ 1 nonvertebral nonhip fragility fracture might be required to initiate therapy;
- 2: Diabetes-specific clinical risk factors (diabetes duration, antidiabetic medications,, hemoglobin A1c and microvascular complications);
- 3: In diabetes, fracture risk at T-score < -2 equivalent for nondiabetes at T-score < -2.5;
- 4: CRF: Clinical risk factor;

TBS: Trabecular bone score;

DXA: Dual energy X-ray absorptiometry; T2DM: Type 2 diabetes mellitus; FRAX: Fracture Risk

Assessment Tool; H/o: History of.

Bone and Diabetes Working Group of IOF.
Diagnosis and management of bone fragility in
diabetes: an emerging challenge.
Osteoporos Int 2018; 29:2585-2596.Copyright

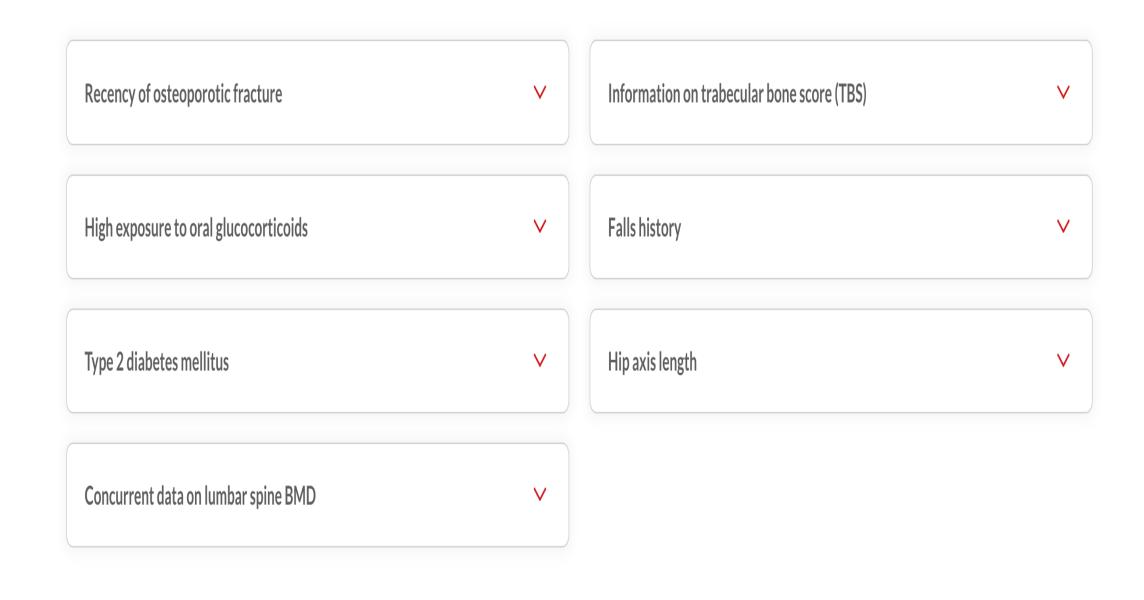
The Author(s) 2018. Published by Springer Nature.

Modified from Ferrari et al: Ferrari SL, Abrahamsen B,Napoli N, Akesson K, Chandran M, Eastell R, El-Hajj Fuleihan G, Josse R, Kendler DL, Kraenzlin M, Suzuki A, Pierroz DD, Schwartz AV, Leslie WD;

Critical review of bone health, fracture risk and management of bone fragility in diabetes mellitus. Palui R, Pramanik S, Mondal S, Ray S. *World J Diabetes* 2021; 12(6): 706-729

May 09, 2023

entered to the world's most widely used fracture risk assessment tool



A new, user-friendly platform for the freely available online FRAX® calculator now hosts the beta version of **FRAXplus®**, an optional extra that illustrates how fragility fracture risk probabilities can be modified for recency of prior fracture, exposure to higher dose oral glucocorticoids, duration of Type 2 diabetes mellitus, Trabecular Bone Score (TBS), recent falls history, concurrent data on lumbar spine BMD and Hip axis length.

FRAX® is the most widely used online fracture risk assessment tool to estimate the individualized probability of hip fracture and major osteoporotic fracture. It integrates well-validated risk

factors for fragility fracture with or without the use of bone mineral density, calibrated according to the country-specific epidemiology of hip fracture and mortality. FRAX® is available for 78 countries or territories and in 35 languages, covering more than 80% of the world's population. It is incorporated into approximately 80 osteoporosis management guidelines worldwide.

Conclusions

- Fragility fractures are another serious complication of diabetes
- Fracture risk evaluation in diabetics requires to integrate not only osteoporosis risk factors but also diabetes-related risk factors (HbA1c, hypoglycemia, type of Tx, complications,...)
- Osteoporosis drugs (AR and TPT) seem to work as efficiently in diabetics with osteoporosis as in osteoporotic subjects without diabetes, but data is limited

Active Surveillance in PTMC

- Active surveillance investigation by Drs Ito and Miyauchi at Kuma hospital initiated in 1993
 - 5 and 10 year growth >3 mm was 3% and 5.5%
 - Risk for growth is age related
 - 5 and 10 year node metastases was 0.9 and 1.1%
 - No distant metastases in 3 studies: 230/60 months;
 1235/75 months; 219/25 months)
 10 year Growth(%)

60 50 40 30 20 10 0 20's 30's 40's 50's 60's 70's

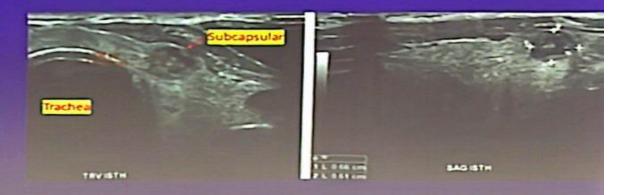
Column5

CS Scanned with CamScanner

Appropriate Candidate for Active Surveillance

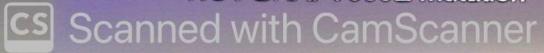
MAeSTro (Multicenter Prospective Cohort Study of Active Surveillance on PTMC)

eal for surveillance:


- Solitary
 - Older patient
 - ≤1.0 cm
 - Surrounded by ≥2 mm of normal thyroid tissue
 - No suspicious cervical adenopathy

cceptable for surveillance:

- Multifoci microPTC
- PTC 1.0-1.5 cm
- Subcapsular
 - ≤1.0 cm
 - Not adjacent to any major structure (not posterior or medial)
 - No suspicious cervical adenopathy

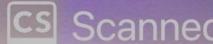

CS Scanned with CamScanner

Follow-up Active Surveillance

- Ultrasound for nodule in remining lobe and nodes every 6 months for 1-2 years, then annually
- Significant progression and Indication for surgery
 - ↑ diameter ≥ 3 mm or ≥ 2 mm in 2 dimensions (~50% increase in volume)
 - Ito & Miyauchi: Surgery when 13 mm
 - Evidence of extrathyroid extension
 - Development of lymph node metastases
 - Development of other thyroid or parathyroid disease that requires surgery

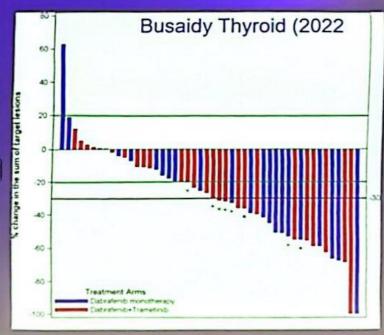
When do you Recommend a Completion Thyroidectomy after Lobectomy

- If PTC is > 4 cm on pathology
- If positive surgical margins
- If gross extrathyroidal extension
- If macroscopic LN metastases >#5 (>2 mm) or > 3 cm
- Confirmed contralateral disease > 1 cm
- If extensive (>4 vessel) vascular invasion
- If distant metastases
- If poorly diffentiated
- NOT minimal extrathyroidal extension
- NOT BRAFV600E mutation


What is New for Advanced Thyroid Cancer?

US FDA approved 9 drugs or drug combintions

	Differentiated thyroid carcinoma (DTC)	Undifferentiated thyroid carcinoma
Systemic treatments and their targets	Papillary, =84% More aggressive subtypes, =5% High-grade differentiated Poorly differentiated	Anaplastic thyroid carcinoma (ATC), ≈19
Antiangiogenic multikinase inhibitors		
Sorafenib - targets VEGFR, PDGFR, RET	► Radioactive iodine refractory (RAIR) DTC	
Lenvatinib - targets VEGFR, PDGFR, FGFR, RET	► RAIR DTC	
Vandetanib - targets VEGFR, PDGFR, RET		
Cabozantinib - targets VEGFR, RET, MET	► RAIR DTC (second line)	
Targeted inhibitors		
Dabrafenib/trametinib - targets BRAF/MEK		► BRAF mutation ATC
Dabrafenib - targets BRAF	► BRAF mutation RAIR DTC	
Larotrectinib - targets NTRK	► NTRK fusion DTC	► NTRK fusion ATC
Entrectinib - targets NTRK	► NTRK fusion DTC	► NTRK fusion ATC
Selpercatinib - targets RET	▶ RET fusion DTC	► RET fusion ATC
Veralset nip - targets FET SCANT	DEET fusion DTC	► RET fusion ATC


NO TARGETABLE MUTATION

> YES TARGETABLE MUTATION

Emerging New Therapies

- Neoadjuvant therapy before surgery
 - Anaplastic thyroid CA with BRAFV600E mutation
 - Treated before surgery with BRAF/MEK inhibitors (dabrafenib and trametinib) often with a checkpoint inhibitor immunotherapy
 - 1 year survival 93.6%
 - Prospective studies being performed now
- Dabrafenib/trametinib may appears to be effective in advanced differentiated thyroid cancer with BRAFV600E

Emerging New Therapies

NRAS

- Redifferentiation therapy
 - Use of selective kinase inhibiros with RAI to restore RaI uptke in refractory patients
 - 8 case series or trials published with some selected favorable results
 - First case series by Ho in 2013
 - Prospective redifferentiation clinical trial with selective MEk and RET inhibitors are underway

	327
	· A
Baseline	After Selumetinib
Patients with Increased	Patients Who
Patients with Increased Iodine Uptake in a Lesion	Patients Who Received
Patients with Increased Iodine Uptake in a Lesion after Selumetinib	Patients Who Received Radioiodine
Patients with Increased lodine Uptake in a Lesion after Selumetinib no./total no	Patients Who Received Radioiodine
Patients with Increased lodine Uptake in a Lesion after Selumetinib no./total no	Patients Who Received Radioiodine of patients
Patients with Increased lodine Uptake in a Lesion after Selumetinib no./total no 4/9 5/5	Patients Who Received Radioiodine of patients
Patients with Increased lodine Uptake in a Lesion after Selumetinib no./total no	Patients Who Received Radioiodine of patients

cs Scanned with CamScanner

Boucai JAMA (February 2024); Ho NEJM 2013

Conclusions

- Changes in the management of thyroid cancer has lead to less aggressive treatment
 - Active surveillance is acceptable for <1.5 cm PTC with a rim of normal tissue
 - No extrathyroidal invasion, no metastatic nodes
- Lobectomy is a acceptable for <4 cm PTC</p>
 - No extrathyroidal invasion, no metastatic nodes
 - Thyroglobulin levels rise over time and cannot be used for tumor recurrence
 - Recurrence of tumor occurs in about 14% of patient but >50% after 10 years

Conclusions

- Advances therapies are actively under investigation
 - Genomic characterization is necessary to determine appropriate targeted treatment
 - BRAFV600E adfanced tumors respond to BRAF/MEK inhibition and can used as adjuvant therapy before surgery
 - Redifferentiation therapy to restore RAI avidity are active being studied

Efmody: a new MR hydrocortisone therapy

Cross section of an Efmody granule

Delayed release coat

Hydrocortisone layer

- Approved by EMA in 2021 for the treatment of congenital adrenal hyperplasia (CAH) in adolescents aged 12+ and adults
- Available in dose strengths of 5mg and 10mg

- Given in a twice a day regimen. The total daily dose should be split with 2/3 to 3/4 of the dose given in the evening at bedtime and the rest given in the morning
- Hydrocortisone is protected by a pHresistant coating that prevents its release in the stomach.²
- On reaching the small bowel, the enteric coating dissolves at pH 6.8.²
- The hydrocortisone is released approximately 4.5 hours post-dose.¹



Microcrystalline core

Physiological cortisol profile & CAH control

HYPERPARATHYROIDISM: FROM BENCH TO BEDSIDE

Matthew T. Drake MD, Ph.D

Mayo Clinic College of Medicine

International Congress of Endocrinology

Charles and With CamScanner

SURGERY FOR PRIMARY HYPERPARATHYROIDISM FIFTH INTERNATIONAL WORKSHOP

- Age < 50 years
- Serum calcium > 1 mg/dL (0.25 mM) ULN corrected for albumin
- Overt Complication (Stones/Bones)
 - Includes radiographic stones (imaging recommended)
 - Hypercalciuria
 - > 300 mg/day (men) or > 250 mg/day (women)
 - Calculated creatinine clearance <60 ml/min
 - BMD with T-score ≤ 2.5
 - Vertebral fracture (morphometric) or fragility fracture
- If no guidelines are met, parathyroidectomy is still an option with concurrence of the patient and physician, if no contraindications

HEREDITARY STATES OF HYPERPARATHYROIDISM

Disorder	Responsible gene	Pathogenic mechanism	Associated clinical features
MEN type 1*	MEN1, CDKN1B	Loss-of-function mutation	Pituitary and gastroenteropancreatic tumors; less frequently, adrenal tumor, facial angiofibroma, collagenoma and lipoma
MEN type 2A	RET ₽	Gain-of-function mutation	Medullary thyroid cancer, pheochromocytoma, cutaneous lichen amyloidosis
Hyperparathyroidism – jaw tumor syndrome	CDC73 (formerly known as HRPT2)	Loss-of-function mutation	Fibromas in mandible or maxilla, renal and uterine tumors, ↑ rate of parathyroid carcinomas (15-20%)
Familial hypocalciuric hypercalcemia	CASR	Loss-of-function mutation	Rare pancreatitis, relative hypocalciuria (24-hr urinary calcium:creatinine ratio <0.01)
Neonatal severe primary hyperparathyroidism	CASR	Loss-of-function mutation	Life-threatening condition with marked hypercalcemia, hypotonia and respiratory distress
Familial isolated hyperparathyroidism	MEN1, CDC73, CASR, GCM2	Loss-of-function mutation	Lack of specific features of other syndromic forms

Marcocci and Cetanin. N Engl J Med. (2011) 365:2389

Scanned with CamScanner

NON-SURGICAL TREATMENT OF PHPT

	BMD	Serum calcium	PTH	Turnover markers
Alendronate	1	0	0	1
Estrogen	1	1	0	1
Raloxifene	No data	1	0	1
Denosumab	†	0	Ť	1
Cinacalcet	0-	1	1/0	1/0
Cinacalcet + Denosumab	1	+	Ť	Ļ
Cinacalcet + Alendronate	†	1	10	1

CS Scanned with CamScanner

Hypoparathyroidism: New Treatment Options

Sihoon Lee, M.D., Ph.D.

Lab. Genomicae et MedicinaeTranslationis

Gachon University College of Medicine

Saturday, March 2, 2024

Dubai International Convention Center

Drawbacks to HypoPT on conventional therapy

Hazard ratio (95% confidence interval)

	Postsurgical	Non-surgical
Renal insufficiency	3.10 (1.73 - 5.55)*	6.01 (2.45 - 14.75)*
Nephrolithiasis	4.02 (1.64 - 9.90)*	0.80 (0.17 - 3.85)
Ischemic heart disease	1.09 (0.83 - 1.45)	2.01 (1.31 - 3.09)*
Seizures	3.8 (2.2 - 6.8)*	10.1 (5.4 - 18.7)*
Cataract	1.17 (0.66 - 2.09)	4.21 (2.13 - 8.34)*
Neuropsychiatric	2.01 (1.16 - 3.50)*	2.45 (1.78 - 3.35)*
Infections	1.42 (1.20 - 1.67)*	1.94 (1.55 - 2.44)*

^{*} Significantly different from control population

Underlong et al. J Rose Miner Ros. 2013 + 2014 + 2015

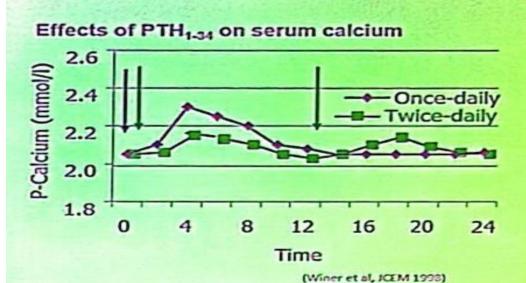
Conventional therapy

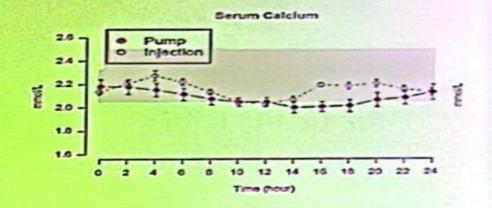
Unknown whether complications are

- due to the disease itself or
- the result of treatment with calcium and activated vitamin D?
 (often causing fluctuation in calcium levels, high levels of

ghosphorous and hypercalciums)

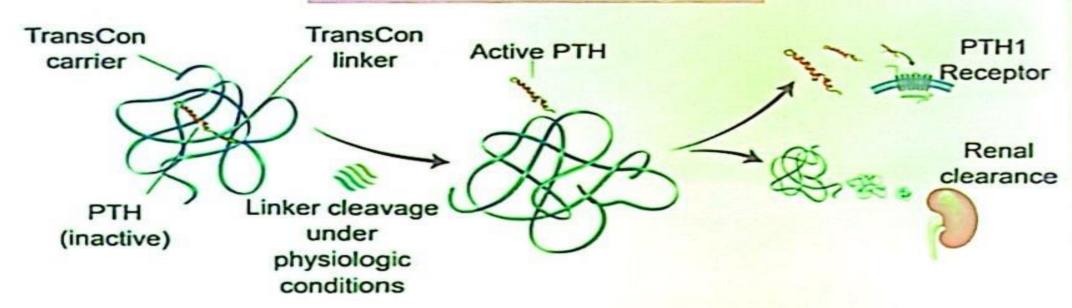
HypoPT is the last of the major hormone deficiency states, which is usually not treated by substitution with the missing hormone


New treatments


PTH replacement therapy

rhPTH₁₋₈₄ (Natpar®) has been marketed for the treatment of HypoPT used in several countries – including USA, Europe, Japan

Available as once-a-day subcutaneous injection in different dosages 25 mcg, 50 mcg, 75 mcg, and 100 mcg/d


PTH(1-34) twice a day or by pump delivery

TransCon® PTH (palopegteriparatide)

TransCon: transient conjugation

subcutaneously once daily, active PTH is released sustainedly, PTH levels in the physiological range for 24 hours.

Palopegteriparatide (TransCon) PTH

PaTH Forward Phase 2 trial:

Annual of Cine of Statements & Mandaline, State, Sale St., Sale Lattle and Separate any St. Communication

Clinical Research Article

PaTH Forward: A Randomized, Double-Blind, Placebo-Controlled Phase 2 Trial of TransCon PTH in Adult Hypoparathyroidism

Allya A. Khan, Lars Rejnmark, Mishaela Rubin, Peter Schwarz, Tamara Vokes, Bart Clarke, Intekhab Ahmed, Lorenz Hofbauer, Claudio Marcocci, Uberto Pagotto, Andrea Palermo, Erik Eriksen, Meryl Brod, Denka Markova, Alden Smith, Susanne Pihl, Sanchita Mourya, David B. Karpt, and Almee D. Shu

PaTHway Phase 3 trial: CLINICAL TRIAL

JBMR'

Efficacy and Safety of Parathyroid Hormone Replacement With TransCon PTH in Hypoparathyroidism: 26-Week Results From the Phase 3 PaTHway Trial

Aliya A Khan, ¹ O Mishaela R Rubin, ² Peter Schwarz, ³ O Tamara Vokes, ⁴ Dolores M Shoback, ⁵ Claudia Gagnon, ⁶ O Andrea Palermo, ⁷ O Claudio Marcocci, ⁸ O Bart L Clarke, ⁹ O Lisa G Abbott, ¹⁰ Lorenz C Hofbauer, ¹¹ Lynn Kohlmeier, ¹² Susanne Pihl, ¹³ Xuebei An, ¹⁴ Walter Frank Eng, ¹⁴ Alden R Smith, ¹⁴ Jenny Ukena, ¹⁴ O Andstopher T Sbley, ¹⁴ Aimee D Shu, ¹⁴ O and Lars Rejnmark ¹⁵

Scanned with CamScanner

Palopegteriparatide (TransCon) PTH

Overall

Treatment with palopegteriparatide seems to address some of the issues in the treatment of HypoPT

- provides stable serum calcium levels
- decreases renal calcium excretion
- improves HR-QoL

Is in the process of being approved by the regulatory authorities

Eneboparatide

Long-Acting PTH Analog (LA-PTH)

- An agonist of parathyroid hormone receptor
 - produces a prolonged calcemic response
 - being developed for treatment of chronic HypoPT

Phase 2b study

Included 14 patients (10 F) - aged 52 (11) years - 79% post-surgical

- well tolerated with no serious adverse event
- >90% of patients were off active vitD and oral Ca (≤500mg/d)
- In 6 of 7 patients with hypercalciuria at baseline, urinary calcium was normalized

 | Company | Compa

Calcilytics: Encaleret

Autosomal Dominant Hypocalcemia (ADH)

A disease caused by activating variants in the <u>calcium-sensing receptor</u> gene -> causes the receptor to believe calcium levels are higher than they are Consequently:

- PTH secretion is suppressed causing hypocalcemia
- · In the kidney: high renal calcium excretion

Encaleret

- · An oral treatment of ADH
- Acts by resetting the set-point of the calcium-sensing receptor causing:
 - increased PTH levels
 - normocalcemia
 - normalization of urinary calcium

Conclusion – to the next level....

Substitution with the missing hormone is needed

Once-a-day injections with short acting PTH-analogues is not feasible

PTH-analogues with a long duration of action is currently being develop

- Seems to be promising
- Still must await long-term effects (complications etc.)
- Specific oral treatment of ADH (calcilytics) is being tested

Overall - in the upcoming years treatment of HypoPT is likely to improve!

Several Challenges in PCOS

- ☐ Complex etiology
- ☐ Heterogeneous clinical presentation
- ☐ Reproductive, metabolic and psychological features
- ☐ Diagnostic difficulties in adolescence
- ☐ Management challenges

cs Scanned with CamScanner

Natural History of PCOS

Fetal androgen excess ? Maternal GDM

SGA → Rapid catch-up growth LGA → Sustained adiposity

Premature adrenarche Precocious puberty

Adrenal/ ovarian hyperandrogenism Insulin resistance

Subfertility
Hyperandrogenism
Metabolic syndrome
DM, HTN, Dyslipidemia
Cardiovascular disease

PCOS: an Evolving Definition

1990 NIH criteria:

- √ Ovulatory dysfunction and
- ✓ Clinical or biochemical hyperandrogenism

2003 Rotterdam criteria: (2 out of 3)

- √ Ovulatory dysfunction
- √ Clinical or biochemical hyperandrogenism
- √ Polycystic ovary appearance on ultrasound

2006 Androgen Excess Society criteria:

√ Androgen excess is a must for diagnosis

What Constitutes Menstrual Irregularities in Adolescents

Menstrual irregularities defined by time from menarche

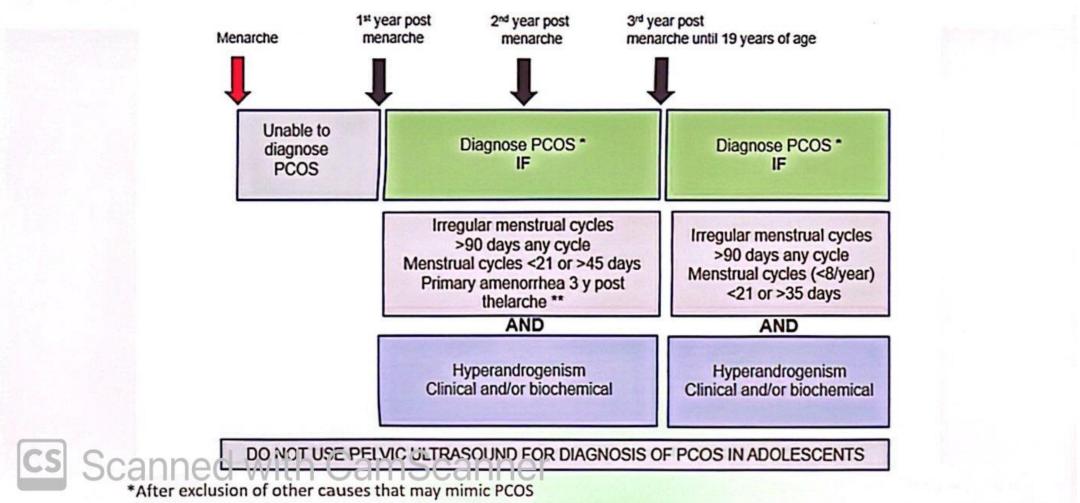
Less than 1 year post menarche

Irregular menstrual cycles are normal pubertal transition

>1 to < 3 years post menarche

< 21 or > 45 days

>3 years post menarche


< 21 or > 35 days or < 8 cycles per year

Mera thand year pigst

590 days for any one cycle

Adolescent PCOS diagnosis according to time post-menarche


**Further investigation may be needed to evaluate primary amenorrhea

Key messages: PCOS in Adolescents

PCOS phenotypes □ Lean PCOS seem to have worse hyperandrogenic profile □ Both obese and lean have a degree of insulin resistance, but this is more pronounced among obese □ Among obese adolescents with PCOS, there are varying degrees of insulin resistance/hormonal abnormalities

☐ Evaluation and management should consider the different phenotypes

Update on Guidelines for Acromegaly Diagnosis and Treatment Follow up

Mônica Gadelha, MD, PhD

Consensus on criteria for acromegaly diagnosis and remission

Andrea Giustina¹ · Nienke Biermasz² · Felipe F. Casanueva³ · Maria Fleseriu⁴ · Pietro Mortini¹ · Christian Strasburger⁵ · A. J. van der Lely⁶ · John Wass⁷ · Shlomo Melmed⁸ · Acromegaly Consensus Group

Accepted: 17 October 2023 ©The Author(s) 2023

Diagnosis criteria - 14th Acromegaly Consensus

Characteristic clinical signs and symptoms of disease

Focus on IGF-I!!

 $IGF-I > 1.3 \times ULN$ for age

CS Scanned with CamScanner

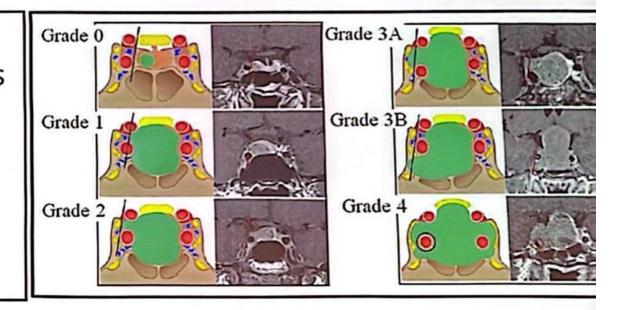
And for equivocal results?

1.0 < IGF-I < 1.3: repeat IGF-I

OGTT might be useful

OGTT: only if baseline levels of GH and IGF-I are not enough for the diagnosis

BMI-based GH nadir cutoffs: $< 0.4 \mu g/L$ for BMI $< 25 \text{ kg/m}^2$ and $< 0.2 \mu g/L$ for BMI $\ge 25 \text{ kg/m}^2$

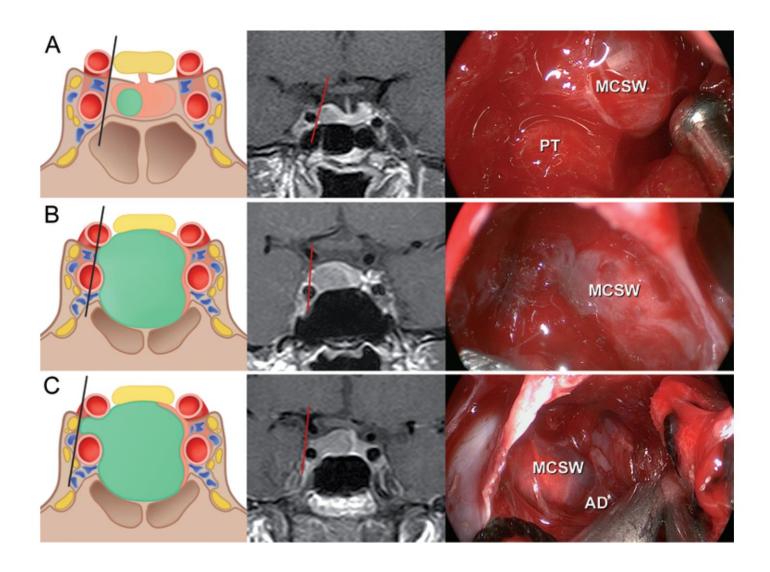

Cessation of oral estrogen therapy for 4 weeks and repeat IGF-I prior to OGTT

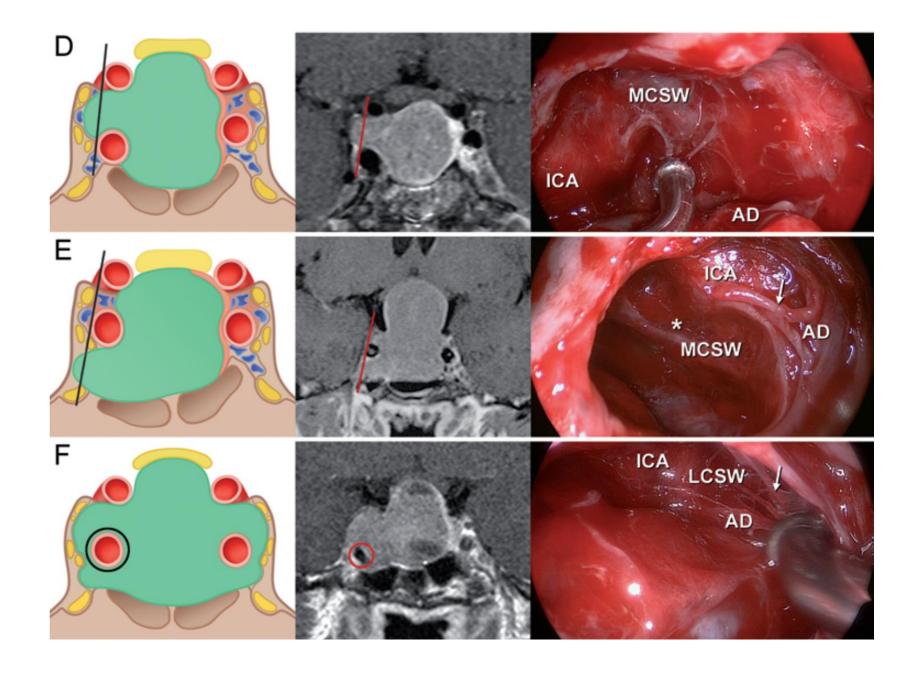
Up to one third of patients with acromegaly may show a paradoxical increase in GH following OGTT

| CS | Scanned with CamScanner

Diagnosis: Imaging Gd-enhanced MRI

Reporting should be standardized High-resolution, 1.5T or 3T scanners T1- and T2-weighted sequences Coronal and sagittal planes 2–3 mm slice thickness No or minimal spacing




Gadelha et al. JCEM 2022

Micko et al., Journal of Neurosurgery, 2015

CS Scanned with CamScanner

Diagnosis – Pathology 7 types of adenomas are associated with acromegaly

Standard reporting should include HE, IHC for pituitary hormones, LMWK and transcription factors (PIT-1; ER; GA Densely granulated somatotroph adenoma Sparsely granulated somatotroph adenoma Mammosomatotroph adenoma Mature plurihormonal PIT-1 lineage adenoma Immature PIT-1 lineage adenoma Acidophil stem cell adenoma Mixed somatotroph and lactotroph adenoma Proliferation markers: Ki-67, mitosis (risk of progression) SST expression. AIP mutation (molecular diagnosis); identification of patients responsive to SRLs

- Clinicopathologic classification of pituitary adenomas that considers adenoma invasiveness using Knosp grade and sphenoid sinus invasion as well as proliferation by Ki-67 and mitoses can distinguish adenomas with potentially more aggressive behavior and thus identify patients at increased risk for progression.
- Somatostatin receptor immunopositivity, granulation pattern, and AIP mutation status have been reported to identify patients less likely to respond to somatostatin receptor ligand (SRL) ther- apy.

Postoperative biochemical remission

IGF-I normalized for age 12 weeks after surgery: surgical success

SRL preoperative treatment: carryover effect

OGTT: nadir < 0.4 μ g/L at 2–5 days and at 3–6 months correlated better with remissic than did < 1 μ g/L; low random GH on day 1 or 2 post surgery

GH <1.6 μg/L 48 h after surgery was able to predict remission with 93% sensitivity and 86% specificity

Antunes X et al. Endocrine 2018

Follow up – biochemical assessment

Postoperative

within the first year, IGF-I in 3-6 months to confirm remission every 6-12 months to monitor for potential recurrence OGTT for patient with borderline IC and clinical signs disease activit

Follow up - imaging (MRI)

3-6 months
postoperatively
(baseline for further
assessments)

Not every year for patients in remission!
Only upon signs of biochemical or clinical disease progression

Individualized
approach:
pegvisomant, genetic
syndromes and
aggressive disease

The Journal of Clinical Endocrinology & Metabolism, 2023, 108, e1571–e1579 https://doi.org/10.1210/clinem/dgad378 Advance access publication 26 June 2023 Clinical Research Article

Long-term Efficacy and Safety of Pasireotide in Patients With Acromegaly: 14 Years of Single-Center Real-World Experience

Mônica Gadelha,*

Nelma Verônica Marques,* Christhiane Fialho, Cristiane Scaf, Elisa Lamback, Ximene Antunes, Erica Santos, Jaqueline Magalhães, and Luiz Eduardo Wildemberg

Neuroendocrinology Research Center, Endocrinology Section, Medical School : Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941 13, Brazil

Nov 2008 – Jun 2022 (n=50 patients) IGF-I < ULN

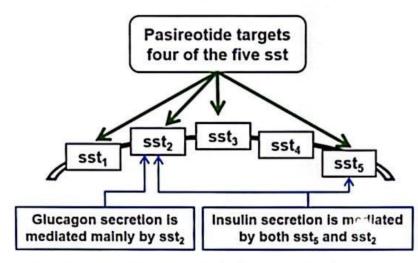
Scanned with CamScaner

Pasireotide LAR

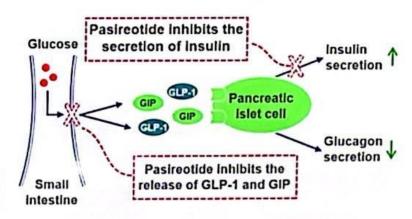
20mg, 40mg and 60mg

20G (0,9mm)

0.9mm x 30mm

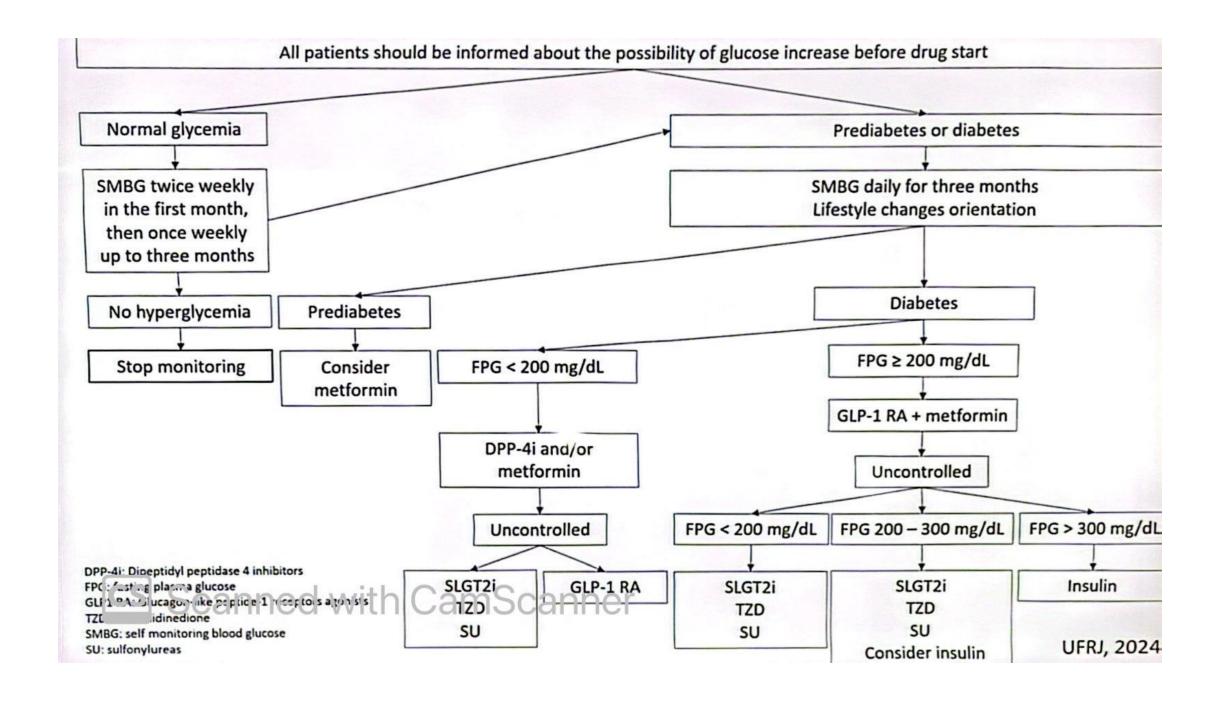

Patients who switch to pasireotide report less discomfort on administration

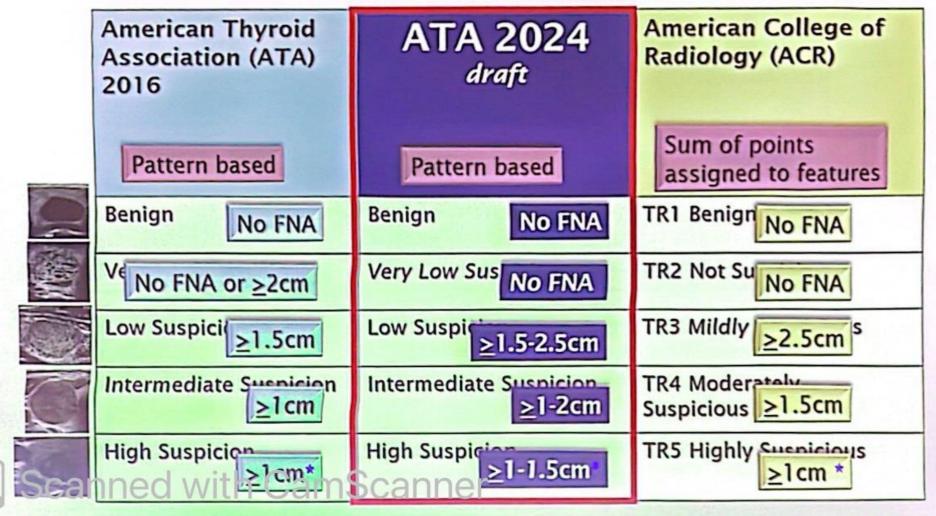
Less presence of nodules


Fasier preparation in risk of clogging ner

Mechanism of hyperglycaemia related to pasireotide

 sst₂ and sst₅ play important roles in blood glucose regulation


The higher binding affinity of pasireotide to sst₅ than to sst₂ may lead to unequal regulation of insulin and glucagon GLP-1 and GIP stimulate insulin secretion and decrease glucagon secretion from the pancreas


 Pasireotide inhibits the secretion of GLP-1 and GIP

Scanned with CamScanner

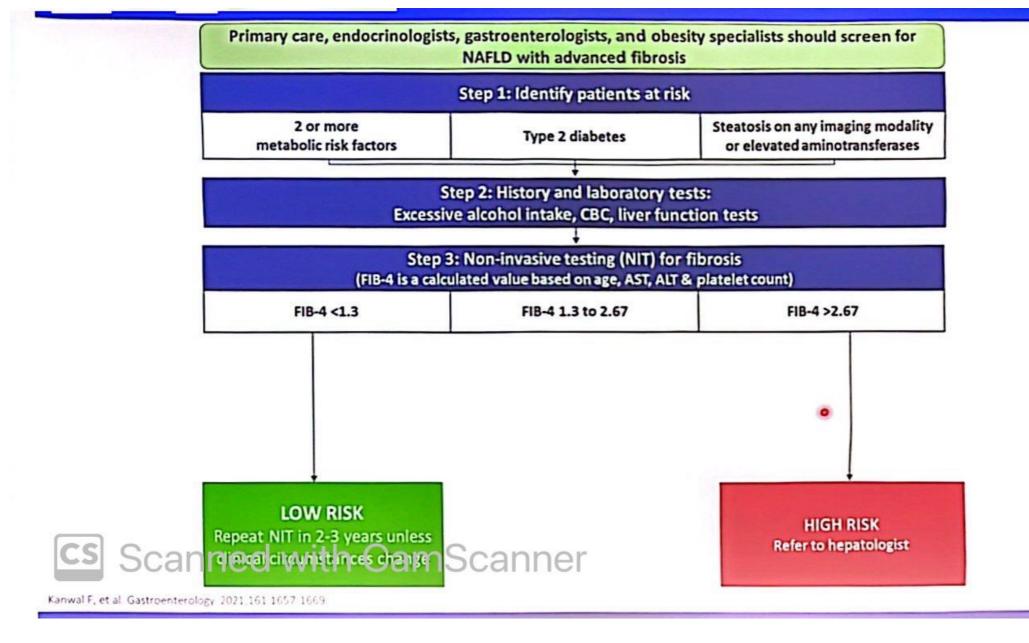
Size Thresholds for FNA Recommendation

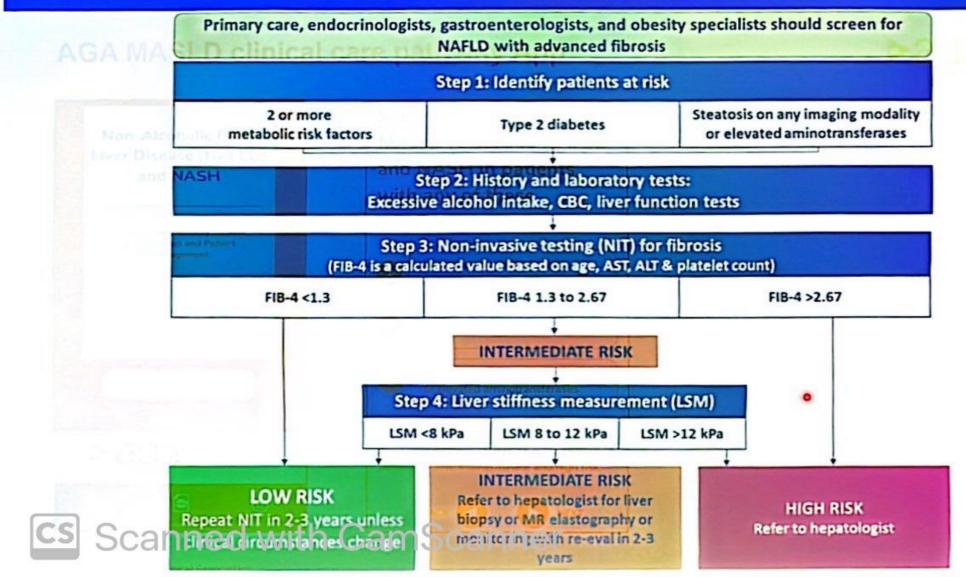
^{*}FNA if 5-9mm under certain circumstances (ALL evaluate cervical LNs)

Follow up for BENIGN CYTOLOGY NODULES

ATA Sonographic pattern at FNA	US follow up	Repeat FNA	Strength of Recommendation	Quality of Evidence
High ROM >50%	Within 12months	Repeat FNA for all nodules	Strong	Moderate
Intermediate ROM >20%-50%	18months- 3 years	Repeat FNA if change to more suspicious pattern*	Conditional	Low
Low ROM 3% -20%	3-5 years	Repeat FNA if change to more suspicious pattern*	Conditional	Low
Very low ROM <3%	No for cancer surveillance	NA	Strong	Moderate

^{*}Reperior *Reperior *Reper


Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Insulin Resistance


Juan Pablo Frías, MD

Chief Medical Officer and Head of Diabetes Biomea Fusion, Redwood City, California, USA

Voluntary Assistant Clinical Professor of Medicine University of California San Diego

American Diabetes Association

Standard of Medical Care in Diabetes - 2022

ı	Table 4.6—Management o	f patients with nonalcoholic fatty	y liver disease and nonalcoholic steatohepatitis

Variable	Lifestyle intervention	Liver-directed pharmacotherapy	Diabetes care (in individuals with diabetes)	Cardiovascular risk reduction
NAFLD	Yes	No	Standard of care	Yes
NASH with fibrosis stage 0 or 1 (F0, F1)	Yes	No	Standard of care	Yes
NASH with fibrosis stage 2 or 3 (F2, F3)	Yes	Yes	Pioglitazone, GLP-1 receptor agonists	Yes
NASH cirrhosis (F4)	Yes	Yes	Individualizec	Yes

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis. All patients require regular physical activity and healthy diet and to avoid excess alcohol intake; weight loss recommended. Among glucagon-like peptide 1 (GLP-1) receptor agonists, semaglutide has the best evidence of benefit in patients with NASH and fibrosis. Evidence for efficacy of pharmacotherapy in patients with NASH cirrhosis is very limited and should be individualized and used with caution. Adapted from Preparing for the NASH Epidemic: A Call to Action (62).

Emerging therapies for MASH

- Resmetirom (selective thyroid hormone receptor β agonist)
- Pegozafermin and efruxifermin (FGF-21 analog)
- Semaglutide (selective GLP-1 receptor agonist)
- Tirzepatide (dual GIP/GLP-1 receptor agonist)
- Pemvidutide, Survodutide (dual GLP-1/Glucagon receptor agonist)
- Retatrutide (triple GIP/GLP-1/Glucagon receptor agonist)

