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Abstract
Non-alcoholic fatty liver disease (NAFLD) has no approved pharmacological treatments. Sodium-glucose cotransporter (SGLT)-1 is a glucose 
transporter that mediates small intestinal glucose absorption. We evaluated the impact of genetically proxied SGLT-1 inhibition (SGLT-1i) on 
serum liver transaminases and NAFLD risk. We used a missense variant, rs17683430, in the SLC5A1 gene (encoding SGLT1) associated with 
HbA1c in a genome-wide association study (n = 344 182) to proxy SGLT-1i. Outcome genetic data comprised 1483 NAFLD cases and 17 781 
controls. Genetically proxied SGLT-1i was associated with reduced NAFLD risk (OR 0.36; 95%CI 0.15, 0.87; P = .023) per 1 mmol/mol HbA1c 
reduction, and with reductions in liver enzymes (alanine transaminase, aspartate transaminase, gamma-glutamyl transferase). Genetically 
proxied HbA1c, not specifically via SGLT-1i, was not associated with NAFLD risk. Colocalisation did not demonstrate genetic confounding. 
Overall, genetically proxied SGLT-1i is associated with improved liver health, this may be underpinned by SGLT-1-specific mechanisms. 
Clinical trials should evaluate the impact of SGLT-1/2 inhibitors on the prevention and treatment of NAFLD.
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Significance

There is a current epidemic of NAFLD, driven by obesity and type 2 diabetes (T2D). There are currently no approved 
pharmacological therapies for NAFLD. Using genome-wide association study data we analyzed how genetically proxied in-
hibition of SGLT-1 (a small intestinal transporter mediating glucose absorption) impacts liver enzymes and NAFLD risk. 
Using two-sample Mendelian randomization we demonstrate that genetically proxied SGLT-1i reduces liver enzymes and 
NAFLD risk via a reduction in HbA1c. The significant effect size on NAFLD risk via HbA1c reduction which is mediated 
through SGLT-1i, but not overall HbA1c, suggests the importance of SGLT-1i-specific mechanisms. Overall, the clinical ef-
ficacy of dual inhibition of SGLT-1/2 in the treatment and prevention of NAFLD warrants evaluation in well-designed clin-
ical trials.

Received: March 23, 2023. Revised: April 22, 2023. Editorial Decision: May 24, 2023. Accepted: May 24, 2023 
© The Author(s) 2023. Published by Oxford University Press on behalf of European Society of Endocrinology. 
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which 
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

Introduction
Non-alcoholic fatty liver disease (NAFLD) is a metabolic disease, 
that commonly co-exists with type 2 diabetes (T2D) and obesity. 
NAFLD is characterized by hepatic accumulation of triglycerides 
(steatosis), which is a subset of people, progresses to non- 
alcoholic steatohepatitis (NASH) and eventually liver fibrosis.1,2

T2D is a key factor in NAFLD pathophysiology; insulin resist-
ance contributes toward elevated serum-free fatty acid concen-
trations which can be deposited within the liver. NAFLD is 
highly prevalent, with up to 1 in 3 individuals living with the 

condition.3 This is concerning, given that NAFLD-associated liv-
er fibrosis occurs in up to 40% of affected people, with NAFLD 
projected to become the most frequent indication for liver trans-
plantation.2 Current therapeutic strategies are sub-optimal, fo-
cusing on lifestyle intervention including weight loss.1 A novel 
NAFLD therapeutic paradigm is urgently required.

NAFLD development is partly driven by glucotoxicity.4-6

Clinical trials of sodium-glucose cotransporter-2 inhibitors 
(SGLT-2i), which inhibit renal tubular glucose absorption, dem-
onstrate that in patients with T2D and NAFLD, SGLT-2i 
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improves liver enzymes and reduces liver fat.7-9 SGLT-1 is a po-
tent mediator of intestinal glucose absorption that contributes to 
NAFLD through increased glucose flux to the liver. Thus, 
SGLT-1 may reduce NAFLD risk via improved glycaemic con-
trol, increased residual gastrointestinal (GI) tract glucose con-
tributing towards favorable neuroendocrine hormone levels, or 
reduced post-prandial glucose load.10-12 Clinically, the use of 
the dual SGLT-1/2 inhibitor licogliflozin for 12 weeks reduced 
serum alanine transaminase (ALT) concentration in participants 
with NASH, but this randomized trial did not include partici-
pants across the NAFLD-disease spectrum.13

Further evaluation of the clinical effects of SGLT-1i in 
NAFLD is justified. Natural variation in the genes that encode 
protein drug targets can offer insight into mechanism-based 
efficacy and safety.14 Such genetic instrumental variable ana-
lysis, or Mendelian randomization (MR), is more robust 
against confounding than traditional epidemiologic designs.15

Since genetic variants are randomly allocated at conception, 
MR can be conceptualized as a quasi-randomized natural ex-
periment comparing NAFLD risk according to levels of genet-
ically proxied SGLT-1 activity. Our aim was to use MR to 
investigate the effect of genetically proxied SGLT-1i on 
NAFLD risk and liver enzyme levels.

Methods
All summary statistics from prior genome-wide association 
studies (GWAS) are publicly available and had previously re-
ceived appropriate patient consent and ethical approval. Full 
details are available in the original publications.16,17 The re-
search complied with the declaration of Helsinki. Methods 
S1 provides details on genetic proxies for SGLT1i and 
HbA1c as well as a genetic association for outcome measures.

Statistical analysis and MR assumptions
We used the Wald ratio method to estimate the association of 
genetically proxied SGLT1i with each outcome, whereby the 
exposure-outcome estimate is derived from the variant-outcome 
association divided by the variant-exposure association.

Analysis using multiple instruments for genetically pre-
dicted HbA1c was performed using the fixed-effect inverse- 
variance weighted (IVW) method.18

Valid instrumental variables are defined by three assump-
tions,19 which we interrogated as follows. First, variants 
must be associated with the exposure of interest. F statistic 
was derived using the chi-square approximation.20 F statistic 
>10 is suggestive of adequate instrument strength.21 Second, 
the variants should share no common cause with the outcome 
(ie, no unmeasured confounders). This assumption is not em-
pirically verifiable, although before a study of SLC5A1 mis-
sense variants showed no association with smoking, alcohol, 
or total energy intake.22 We also tried to minimize bias arising 
from underlying population structure through the use of 
European ancestry populations. We also performed colocali-
zation analysis to examine possible genetic confounding 
through linkage disequilibrium (LD) using default prior prob-
abilities (ie, 10−4, 10−4, and 10−5 for a variant within the 
SLC5A1 genomic locus being associated with the exposure 
trait, outcome trait, or both traits, respectively). Third, var-
iants should not affect the outcome except through the risk 
factor. The use of a missense variant with plausible biology re-
duces the risk of this bias. Analyses were performed in R using 
the TwoSampleMR and coloc packages.23,24

Results
Three protein-coding variants in high LD (r2 = 1) were identi-
fied in the SLC5A1 gene. The lead variant, rs17683430 (F stat-
istic 59), was used to instrument SGLT1i. Table 1 details the 
GWAS data included for analysis.

In the primary analysis, genetically proxied SGLT1i was asso-
ciated with a 64% reduction in risk of NAFLD (odds ratio [OR]: 
0.36; 95%CI 0.15, 0.87; P = .023) per 1 mmol/mol HbA1c re-
duction. Genetically proxied SGLT1i was associated with reduc-
tions in ALT (−0.98 U/L, 95%CI −1.59, −0.37, P < .01), AST 
(−0.58 U/L, 95%CI −1.05, −0.10, P = .02), and gamma- 
glutamyl transferase (GGT) (−3.73 U/L, 95%CI −5.61, −1.85, 
P < .01).

In comparison, genetically proxied HbA1c (instrumented 
using 186 single nucleotide polymorphisms (SNPs) for Liver 
Enzymes and 155 SNPs for NAFLD), not specifically via 
SGLT-1i, was associated with reduced ALT and GGT, but 
not with AST or NAFLD risk (Figure 1). Associations with 

Table 1. Summary of genome-wide association studies for analyses.

Study N 
(case/controls)

Phenotype 
(definition/unit)

Ancestry

Glycated hemoglobin 
(HbA1c) (UKBB)16

344 182 1 mmol/mol EUR

NAFLD (Anstee 
et al)17

1483 NAFLD/ 
17781 Control

Liver biopsy 
proven NAFLD

EUR

ALT (UKBB)16 388 865 U/L EUR
AST (UKBB)16 388 865 U/L EUR
GGT (UKBB)16 388 865 U/L EUR

Abbreviations: ALT, alanine aminotransferase; AST, aspartate aminotransferase; 
EUR, European; GGT, gamma-glutamyl transferase; NAFLD, non-alcoholic 
fatty liver disease; U/L, units/litre; UKBB, UK Biobank; EUR, European.

Figure 1. Forest plots of Mendelian randomisation results. Panel 1: 
NAFLD; forest plot depicting NAFLD risk on a linear scale. Panel 2: liver en-
zymes; forest plot depicting liver enzymes on a logarithmic scale. NAFLD, 
non-alcoholic fatty liver disease; U/L, units/litre; ALT, alanine aminotrans-
ferase; AST, aspartate aminotransferase; GGT, gamma-glutamyl transfer-
ase; OR, odds ratio.
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ALT and GGT were directionally discordant in pleiotropy ro-
bust sensitivity analyses, suggesting the presence of bias. 
(Table S1).

Colocalization
For NAFLD, the probability of colocalization conditional on 
the presence of a causal variant for the outcome was 89%. 
For ALT, aspartate transaminase (AST) and gamma-glutamyl 
transferase (GGT) equivalent probabilities were 87%–89% 
(Table S2). These results suggest that the MR estimates for 
the effect of SGLT1i on NAFLD, ALT, AST, and GGT are un-
likely to be confounded by a variant in LD. Locus plots are dis-
played in Figures S1–S4.

Discussion
We conducted a two-sample MR study to investigate whether 
SGLT-1i may be a potential pharmacological therapy for pa-
tients with NAFLD. Genetically proxied SGLT-1i significantly 
reduces NAFLD risk and liver enzymes. The estimates for 
HbA1c reduction via SGLT-1i were greater than for overall 
HbA1c (not via SGLT-1), indicating additional mechanisms 
specific to SGLT-1 may be important. We also show a more 
significant association of SGLT-1i with a reduction in serum 
ALT rather than AST concentration, a pattern consistent 
with liver fat reduction.25 Given the emerging evidence of 
SGLT-2i in the treatment of NAFLD,7,8,25 clinical trials evalu-
ating dual SGLT1/2 inhibitors are needed to investigate its 
therapeutic potential and preventative effects for NAFLD.

Novel pharmacotherapies for NAFLD are urgently needed.26

SGLT-2i is a potential option: in the E-LIFT (effects of empagli-
flozin on liver fat content in patients with type 2 diabetes) trial 
empagliflozin significantly reduced liver fat and improved 
liver enzymes.7 Pooled data in the EMPA-REG outcome 
study (empagliflozin cardiovascular outcome event trial in 
type 2 diabetes mellitus patients) demonstrated that empagliflo-
zin reduced ALT independent of body weight.25 However, effi-
cacy and safety may be limited in those with renal impairment. 
Our data highlight that SGLT-1i reduces NAFLD risk and 

improves liver enzymes. These results are in keeping with phase 
2 data in patients with NASH, where licogliflozin, a dual 
SGLT1/2 inhibitor, potently reduced liver enzymes.13 The high-
est dose, 150 mg, also reduced liver fat. Further data are needed 
to evaluate Licogliflozin in patients with NAFLD fibrosis. 
Overall, the addition of SGLT-1i in combination with 
SGLT-2i may have a synergistic effect in improving liver health. 
Dual SGLT-1/2 inhibitors warrant an evaluation in clinical tri-
als of participants with NAFLD.

Mechanistic underpinning
Our data shows that HbA1c reduction via genetically proxied 
SLGT-1i reduces NAFLD risk and improves liver enzymes. 
This pattern was not reflected in overall HbA1c reduction 
meaning SGLT-1i may act through HbA1c-independent 
mechanisms. SGLT-1 modulates entero-endocrine hormone 
regulation, for instance, reduced SGLT-1-mediated glucose 
absorption leads to residual GI glucose which stimulates 
Glucagon-like Peptide-1 (GLP-1) and inhibits gastrointestinal 
polypeptide (GIP).12,27 Sotagliflozin, a dual SGLT1/2i, in-
creases GLP-1 and reduces GIP in a pattern consistent with 
reduced liver adiposity.10,28-30 Chronic hyperglycemia also 
contributes to hepatic fat accumulation. A raised 1-hour 
post-oral glucose tolerance test (OGTT) level (≥8.6 mmol/L) 
is implicated in NAFLD risk via glucotoxicity-mediated inflam-
mation. Small intestinal SGLT-1 abundance correlates with 
raised 1-hour glucose level post-OGTT, but not with fasting 
glucose or 2-hour OGTT level.5,6,11,31 Increased 1-hour 
post-OGTT glucose level enhances the risk of NAFLD and liver 
enzyme derangement, therefore SGLT-1i may reduce 1-hour 
post-OGTT glucose level and potentially NAFLD risk.32-34

SGLT-1 expression is higher in those with obesity, with obesity 
being a risk factor for NAFLD.35-37 SGLT-1i may be useful in 
the phenotype of patients with NAFLD, obesity, and 
T2DM.35 Overall, SGLT-1i inhibition may reduce NAFLD 
risk by pleiotropic effects including: (1) reduction in HbA1c, 
(2) modulation of neuroendocrine signaling, (3) body weight 
reduction, and (4) reduced 1-hour OGTT glucose level 
(Figure 2).10-12 Further evaluation is required.

Figure 2. Graphical summary delineating how SGLT-1 inhibition may impact NAFLD development. GI, gastrointestinal; GLP-1, glucagon-like-peptide 1; GIP, 
gastrointestinal polypeptide; NAFLD, non-alcoholic fatty liver disease; OGTT, oral-glucose tolerance test; SGLT-1, sodium-glucose cotransporter 1.
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Limitations
A key limitation is that MR provides an association of genetic-
ally predicted SGLT-1i over a lifetime, meaning effect estimates 
may be larger than quantified in adult life studies.14 Second, the 
risk factors for disease onset may not be equivalent to those for 
disease severity or prognosis. Therefore, our results are more 
applicable to NAFLD prevention. Third, it is important to 
note that the effects of genetic variation on SGLT1 levels cannot 
be directly compared to the effects of pharmacological inhib-
ition. Differences in exposure duration and tissue specificity 
may also play a role. Fourth, as with all MR studies, the as-
sumptions made in instrumental variable analysis cannot be 
empirically verified. Although we conducted sensitivity ana-
lyses to address potential sources of bias, it is still possible 
that pleiotropy or confounding may affect our estimates. 
rs17683430 is associated with the expression of several genes; 
however, the most strongly associated expression quantitative 
loci relates to SLC5A1, suggesting that any pleiotropic effects 
may be modest. Finally, our study population consisted only 
of participants of European ancestry.

Conclusions
We report that genetically proxied SGLT-1i reduces NAFLD 
risk and improves liver enzymes in a population with a low 
prevalence of diabetes. Our data also point toward this risk re-
duction being partially mediated via SGLT-1-specific mecha-
nisms. SLGT-1i is also associated with ALT to a greater 
extent than AST, a transaminase pattern consistent with liver 
fat reduction. Overall, clinical trials should investigate 
SGLT1/2 inhibitors in the NAFLD-disease spectrum.
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