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Abstract
Context: As men age, circulating testosterone (T) decreases, circulating SHBG increases, and the risk of fracture increases. It is unclear if 
circulating T, independently of comorbidities, is associated with fracture risk in men.
Objectives: To determine associations for T and SHBG with incident fractures in men.
Methods: We utilized the large (n = 205 973 participants, 11 088 any fracture cases, 1680 hip fracture cases, 1366 forearm fracture cases) and 
well-characterized UK Biobank cohort. Associations were modeled using Cox regressions, adjusting for multiple comorbidities/covariates, 
imputing for missing information, and assessing nonlinearity using cubic splines.
Results: For T, not considering SHBG, there was a nonlinear association with hip but not forearm fractures, with the lowest risk in the second quintile. 
However, in models adjusted for SHBG or using calculated free T, lower T was associated with a higher risk for fractures at all evaluated bone sites. 
Lower SHBG was strongly associated with a lower risk of hip and forearm fractures (Q1 vs Q5, hip 0.55, 0.47-0.65; forearm 0.62, 0.52-0.74).
Conclusion: Low circulating SHBG is strongly associated with a low risk of fracture at all evaluated bone sites, while the associations of circulating T 
with fracture risk are of lesser magnitude, nonlinear, inconsistent among fracture site, and affected by adjustment for SHBG. These findings 
demonstrate that circulating SHBG, rather than T, is a major independent biomarker of fracture risk in men. Consequently, both total T and SHBG 
should be assessed when examining the relationship of endogenous T concentrations with fractures in middle-aged to older men.
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Osteoporotic fractures increase with age as bone mass de
creases, bone microarchitecture deteriorates, and the propen
sity to fall increases. Although osteoporotic fractures are 
more common in women than in men, as many as 1 in 4 men 
sustain an osteoporotic fracture during their lifetime (1). 
Men have higher mortality than women following a fracture, 
thus it is of concern that men at high risk of fractures are often 
untreated (2, 3).

As men age, their circulating testosterone (T) decreases, cir
culating SHBG increases, and risk of fracture increases. 
However, it is unclear if circulating T per se, independently 
of comorbidities, contributes to the increased fracture 

incidence in older men. Prospective observational studies 
examining the associations between circulating T and incident 
fractures have yielded inconsistent results (4-13). These stud
ies have included up to 4324 men with up to 342 incident frac
ture cases and have reported inconsistent associations of 
circulating T and incident fracture risk. This inconsistency 
may be due to the fact that the study populations may differ 
concerning the prevalence of hypogonadism, risk of falls, 
and muscle mass of the individuals, factors that could impact 
the association between T and fracture risk. In contrast, most 
previous prospective observational studies demonstrate that 
high circulating SHBG (4-10, 13, 14) and low circulating 
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calculated free T (cFT) (4-6, 8, 9, 11, 14), calculated using to
tal T and SHBG (15), are associated with increased fracture 
risk in men.

In men who are frankly hypogonadal, T treatment im
proves bone mineral density (BMD) (16-18). In older men, 
T treatment had no or minor effects on BMD in early short 
and small studies (19-22). However, the more recent Bone 
Trial of the Testosterone trials (T-Trials) showed that T 
treatment with a gel for 1 year increased volumetric BMD 
and estimated bone strength in older men with low T (23). 
Interestingly, the treatment-induced change in circulating es
tradiol, not the change in circulating T, was the best predict
or of the change in volumetric BMD in that study (24). In 
the recent T for Bone (T4Bone) trial, a substudy of the 
T4DM trial, which included men ≥50 years of age with ei
ther impaired glucose tolerance or newly diagnosed type 
2 diabetes (25), treated with injectable T undecanoate or 
placebo for 2 years, T treatment increased both volumetric 
BMD as analyzed by computed tomography and areal 
BMD as analyzed by dual energy x-ray absorptiometry 
(26). However, neither the T-Trials nor the T4Bone trial 
were powered to determine whether T treatment affects frac
ture risk. Unexpectedly, in the recent large placebo- 
controlled TRAVERSE trial (n = 5204), treating men with 
T less than 300 ng/dL with a high risk of cardiovascular dis
ease with a T gel, T treatment increased the risk of clinical 
fractures, but the underlying mechanism is unknown [pla
cebo: 64 fractures; testosterone: 91 fractures; hazard ratio 
(HR) for fractures 1.43; 95% confidence interval (CI), 
1.04-1.97] (27). The fracture incidence also appeared to be 
higher for all other fracture end points in that study (27). 
In summary, many of the T treatment studies included 
men with different pathologies and risk factors that could in
fluence the effect of T on bone.

Thus, the role of exogenous and endogenous T for fracture 
risk in men is unclear. The main aim of the present study was 
to determine associations of endogenous circulating T, SHBG, 
and T considering SHBG (either as cFT or T adjusted for 
SHBG) with incident fractures at different bone sites in men. 
To determine these associations, adjusting for multiple co
morbidities/covariates and imputing for missing information 
in the models, we used the UK Biobank that constitutes the 
by far largest (n = 205 973 participants, 11 088 fracture cases) 
male prospective cohort (28).

Materials and Methods
The UK Biobank
From 2006 to 2010, the prospective UK Biobank cohort study 
recruited over 500 000 community-dwelling individuals aged 
37 to 73 years from across the United Kingdom. Participants 
provided biological samples, completed questionnaires, 
underwent assessments, and were interviewed by nurses. 
Blood was collected for future analysis, and the self-reported 
interval between consumption of food and drink and blood 
sampling, ie, fasting time, was recorded. Follow-up using re
cord linkage to all health service encounters and mortality 
data is ongoing. The UK Biobank has ethical approval from 
the Northwest Multicentre Research Ethics Committee (refer
ence 11/NW/0382), and all participants provided informed 
consent (28). This research was conducted using the UK 
Biobank resource under application number 54 680.

Variables of Interest

Exposures
Blood samples were collected throughout the day and ana
lyzed in the UK Biobank core laboratory (29, 30). Serum total 
T was quantified using a competitive binding chemilumines
cent immunoassay (DXI 800; Beckman Coulter Cat# 33560, 
RRID:AB_2905661, UK) with an analytical range of 0.35 to 
55.5 nmol/L and coefficients of variation of 8.3% for low con
centrations, 3.7% for medium concentrations, and 4.2% for 
high concentrations (29, 30). Serum SHBG was quantified us
ing a 2-step sandwich chemiluminescent immunoassay (DXI 
800; Beckman Coulter Cat# A48617, RRID:AB_2893035) 
with an analytical range of 0.33 to 242 nmol/L and coeffi
cients of variation of 5.7% for low concentrations, 5.3% for 
medium concentrations, and 5.2% for high concentrations 
(29, 30). cFT was calculated using the Vermeulen method, us
ing T, SHBG, and fixed albumin concentration (42 g/L) (15).

Fracture outcomes
Follow-up of incident events was from the baseline survey 
(March 2006 to October 2010) until the corresponding UK 
Biobank censoring date for each country (as of July 12, 
2023; October 31, 2022 for England; August 31, 2022 for 
Scotland; May 31, 2022 for Wales) where the baseline assess
ment had taken place. Incident events during follow-up were 
identified using the International Classification of Diseases 
diagnosis codes from hospital admissions, listed in any pos
ition, for each of any fracture, hip fracture, or forearm frac
ture [Supplementary Table S1 (31)]. Follow-up times for 
participants who did not experience an incident event prior 
to being lost to follow-up, death, or end of follow-up were re
tained as censored observations.

Covariates
Participants’ age, body mass index, waist circumference, alco
hol consumption, diet (red meat consumption: high vs low vs 
none), educational qualifications (completed university/col
lege vs not), ethnicity (White vs not White), level of physical ac
tivity, living with partner (yes vs no), smoking status, use of 
medications (anticonvulsants, glucocorticoids, opioids, vita
min D supplementation, total number of medications taken), 
and comorbidities (chronic obstructive pulmonary disease, 
primary hyperparathyroidism, renal impairment, secondary 
osteoporosis, thyroid disease) were derived from data col
lected at the baseline assessment [Supplementary Methods 
(31)]. Total number of medications was included as a proxy 
for overall comorbidity status (32). The time of blood sample 
collection and vitamin D concentration in blood serum assayed 
using chemiluminescent immunoassay were also obtained. 
Secondary osteoporosis (comprised of men reporting type 1 
diabetes, chronic liver disease, or osteogenesis imperfecta) 
and glucocorticoid use were identified using definitions pro
vided in another UK Biobank study (33). Geographic regions 
were obtained by grouping baseline assessment centers into 1 
of 10 broader spatial units (South West, South East, London, 
East Midlands, West Midlands, Yorkshire & The Humber, 
North East, North West, Scotland, Wales) (34).

Statistical Analyses
The risk of each fracture outcome associated with each base
line sex hormone (T, SHBG, cFT) concentration was 
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estimated using Cox proportional hazards modeling. Four 
models of increasing complexity were fitted, including sex 
hormone, time of blood sampling, geographic region, and par
ticipant age (model 1); model 1 terms plus thyroid disease, re
nal impairment, ethnicity, and other Fracture Risk Assessment 
Tool.(FRAX)-related covariates (body mass index, fracture in 
past 5 years, smoking status, glucocorticoid use, secondary 
osteoporosis, alcohol consumption) (model 2); model 2 terms 
plus living with partner, education, diet, physical activity, 
waist circumference, serum vitamin D, and comorbidity/medi
cation usage (chronic obstructive pulmonary disease, opioids, 
anticonvulsants, vitamin D supplementation, number of med
ications) (model 3); model 3 terms plus T for analyses of 
SHBG or SHBG for analyses of T (model 4). Continuous var
iables were modeled using restricted cubic splines with outer 
knots values placed at the 5th and 95th percentiles and inner 
knots at the 27.5th, 50th, and 72.5th percentiles (35). 
Geographic region was modeled as a stratification factor to 
account for potential spatial variability in demographic, life
style, and health factors. Per-variable and global tests of the 
proportional hazards were conducted from the fit of each 
model to the first of the imputed datasets and Schoenfeld re
sidual plots inspected (36). Covariates showing a departure 
from proportional hazards were analyzed as stratification fac
tors instead of as model terms; see Supplementary Methods 
(31, 35).

Each model was fitted to 40 multiply imputed versions of 
the dataset after excluding men with pituitary disease, infer
tility, orchidectomy, congenital adrenal hyperplasia, missing 
baseline sex hormone concentration; men receiving andro
gen, antiandrogen, 5α-reductase inhibitors, or other hor
mone medications or osteoporosis therapies; men with a 
history of rheumatoid arthritis, malnutrition or malabsorp
tion, vitamin D deficiency; or men who had withdrawn con
sent. Fully conditionally specified imputations were done 
including fracture outcome and all predictors from the full 
model (model 4 for T and SHBG and model 3 for cFT ana
lyses). Cubic polynomial terms were constructed for varia
bles that were modeled using restricted cubic splines to 
ensure that imputation models were congenial with the analysis 
models (37). Further details are provided in Supplementary 
Methods (31). Multiply imputed estimates were pooled using 
Rubin’s rules (38).

Estimates of the median follow-up times were calculated us
ing the reverse Kaplan–Meier method (39). Plots of the esti
mated HR and 95% CIs for each baseline sex hormone 
concentration, calculated relative to the median of the highest 
(fifth) sample quintile, were constructed using marginal pre
dictions from each fitted model. HRs and 95% CIs were 
also tabulated for medians of sample quintiles.

Competing risk regression models were fitted to estimate 
the role of baseline hormone (testosterone, SHBG, cFT) con
centration on the 10-year predicted risk of each fracture out
come, lowered by the occurrence of the competing risk of 
death. A Fine–Gray model including all model terms plus 
the country of the assessment center (England, Scotland, 
Wales) was fitted to each of the fracture Multiple Imputation 
using Chained Equations-imputed datasets in R using the 
fastcmprsk package with the maximum number of iterations 
set to 10 000. Marginal predictions of cumulative incidence 
at 10 years were then predicted from each fitted model for 
this cohort of UK Biobank men. Analyses were conducted using 
R version 4.3.1 (40).

Results
Study Cohort
After excluding participants who had withdrawn consent, 
there were data available for 229 066 men. Excluding men 
who were taking androgen, antiandrogen, 5α-reductase inhib
itors, or other hormone medications and men with pituitary 
disease, infertility, orchidectomy, or congenital adrenal hyper
plasia left 224 211. Additional exclusions of men on osteopor
osis therapies, with a history of rheumatoid arthritis, 
malnutrition, malabsorption, or vitamin D deficiency left 
221 597 [Supplementary Fig. S1 (31)]. Further exclusions 
due to missing sex hormone measurements at baseline left 
n = 205 973 for T analyses, n = 190 607 for SHBG analyses, 
and n = 189 585 for cFT analyses [cFT estimation requires 
both T and SHBG, Supplementary Fig. S1 (31)].

Participant Characteristics
The analysis cohort comprised men who were middle- to 
older-aged at baseline, with ages ranging from 37 to 73 years 
(median = 58 years). The duration of follow-up (median with 
interquartile range) was 13.6 years (12.9 to 14.3 years) for any 
fracture. During follow-up, 11 088 men (5.0%) recorded a 
fracture at any bone site [1680 hip fracture cases and 1366 
forearm fracture cases (Supplementary Table S2 (31)]. 
Those who experienced a hip fracture during follow-up 
were slightly older (median age = 63 years) than those who ex
perienced a forearm fracture (median age = 57 years; Table 1). 
The majority of men were not obese, vitamin D sufficient, of 
White ethnicity, living with a partner, drinking no or moder
ate alcohol, consuming a low red meat diet (beef, lamb, or 
pork intake 2-4 times per week or less), performing sufficient 
or additional physical activity, never or previous smokers, and 
relatively healthy, taking 0 to 2 regular prescription medica
tions. Median concentrations in blood were 11.6 nmol/L for 
T and 36.9 nmol/L for SHBG for all participants but higher 
for those who experienced subsequent fracture, although the 
differences for T were relatively small [Supplementary 
Table S2 (31)].

Testosterone Associations

T analyses not considering SHBG
The estimated HRs of any and hip fractures from model 1, 
which controlled for baseline age, time of blood sampling, 
and region, demonstrated nonlinear associations with base
line T, being lower (that is, HR < 1) relative to the reference 
value at the median of the fifth quintile (Q5; 16.7 nmol/L) 
and lowest near the median of the second quintile [Q2, 
9.9 nmol/L; Supplementary Fig. S2 (31)]. These nonlinear as
sociations remained but were slightly attenuated after adjust
ments for FRAX-related clinical risk factors [model 2, 
Supplementary Fig. S2 (31)] and FRAX + comorbidity-related 
predictors (model 3, Fig. 1). There were no statistically signifi
cant associations for T with risk of forearm fractures [Fig. 1, 
Supplementary Fig. S2 (31)]. When comparing quintiles of T 
using the model adjusted for FRAX- and comorbidities- 
related predictors (model 3), there was a nonlinear association 
of T with hip but not forearm fractures, with the lowest risk in 
the second quintile (Q2, HR, 95% CIs Q2 vs Q5 hip fracture 
0.76, 0.66-0.87; forearm fracture 0.97, 0.83-1.13; Table 1).
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T analyses adjusting for SHBG
For fractures at all evaluated bone sites, subsequent adjust
ment for baseline SHBG (model 4) resulted in elevated esti
mates of fracture risk (that is, HR > 1) for men with 
T concentrations lower than the Q5 median, with the high
est risk for the men with the lowest T concentrations (Fig. 1; 
Table 1).

Analyses using cFT
Using cFT, lower cFT was associated with a higher risk for 
fractures at all evaluated bone sites [Fig. 1, Supplementary 
Fig. S3 (31), Table 2]. It is noteworthy that the estimated asso
ciations for cFT (any fracture HR 1.24, 1.16-1.33, Q1 vs Q5) 
with risk of fracture at different bone sites resemble those for 
testosterone adjusted for SHBG (any fracture HR 1.27, 
1.20-1.35, Q1 vs Q5, Fig. 1).

SHBG associations
In the base model (model 1), lower SHBG concentrations were 
associated with a lower risk of fractures at all evaluated bone 
sites [Supplementary Fig. S4 (31)]. Further adjustments for 
FRAX-related predictors [model 2, Supplementary Fig. S4 
(31)] and FRAX + comorbidity-related predictors (model 3, 
Fig. 2) did not result in substantively different estimates. 
When comparing quintiles of SHBG using the model adjusted 

for FRAX- and comorbidity-related predictors (model 3), 
lower SHBG concentrations were strongly associated with 
lower risk of any, hip, and forearm fractures (HR Q1 vs Q5, 
any fracture 0.71, 0.67-0.75, hip fracture 0.55, 0.47-0.65; 
forearm fracture 0.62, 0.52-0.74, Table 3). This was reflected 
by a higher absolute 10-year risk, taking the competing risk of 
death into account, for any, hip, and forearm fractures for 
men in quintile 5 (2.88%, 0.33%, and 0.47%, respectively) 
compared with men in quintile 1 (2.10%, 0.18%, and 
0.30%, respectively) of SHBG [Supplementary Table S3 
(31)]. Subsequent adjustment for baseline T (Fig. 2) did not 
substantively impact trends, except for estimating slightly 
lower HRs for the median of Q1 relative to that of Q5 (Fig 
2 and Table 3).

Discussion
The role of both exogenous and endogenous T for fracture 
risk in men is unclear. Conducting analyses in the large UK 
Biobank prospective cohort study, we found modest, non
linear associations between circulating T with any fractures 
and incident hip fractures but not forearm fractures, with 
the lowest risk near the median of the second quintile. 
However, additional adjustment for SHBG revealed inverse 
associations of circulating T with the risk of fractures at all 

Table 1. Hazard ratios of different types of fracture event by quintiles of Ta

Model Q1 (lowest T) Q2 Q3 Q4 Q5 (highest T)

Median T (nmol/L) 7.70 9.89 11.61 13.53 16.69
Median T (ng/dL) 222 285 335 390 481

n = 41 197 n = 41 201 n = 41 191 n = 41 191 n = 41 193
Any fracture: 11,008 events

2230 events 2107 events 2099 events 2193 events 2379 events
Models without SHBG Model 1 0.92 (0.88-0.97) 0.84 (0.80-0.88) 0.90 (0.84-0.95) 0.93 (0.90-0.96) ref.

Model 2 0.96 (0.91-1.02) 0.89 (0.84-0.94) 0.94 (0.89-1.00) 0.96 (0.93-0.99) ref.
Model 3 0.93 (0.88-0.98) 0.89 (0.84-0.94) 0.94 (0.89-1.00) 0.97 (0.94-1.00) ref.

Model with SHBG Model 4 1.24 (1.16-1.33) 1.12 (1.05-1.19) 1.11 (1.04-1.18) 1.06 (1.02-1.10) ref.
Hip fracture: 1,680 events

343 events 278 events 301 events 361 events 397 events
Models without SHBG Model 1 0.72 (0.63-0.82) 0.65 (0.57-0.74) 0.74 (0.64-0.86) 0.86 (0.79-0.93) ref.

Model 2 0.90 (0.78-1.03) 0.80 (0.70-0.92) 0.87 (0.74-1.01) 0.94 (0.86-1.02) ref.
Model 3 0.79 (0.69-0.91) 0.76 (0.66-0.87) 0.84 (0.72-0.98) 0.93 (0.86-1.01) ref.

Model with SHBG Model 4 1.28 (1.08-1.51) 1.13 (0.97-1.33) 1.09 (0.93-1.29) 1.07 (0.98-1.17) ref.
Forearm fracture: 1,366 events

255 events 289 events 273 events 253 events 296 events
Models without SHBG Model 1 0.97 (0.84-1.12) 0.92 (0.79-1.06) 0.96 (0.81-1.13) 0.95 (0.87-1.04) ref.

Model 2 1.02 (0.88-1.19) 0.97 (0.83-1.13) 1.00 (0.84-1.18) 0.97 (0.89-1.07) ref.
Model 3 1.00 (0.86-1.17) 0.97 (0.83-1.13) 1.00 (0.84-1.19) 0.98 (0.89-1.07) ref.

Model with SHBG Model 4 1.51 (1.25-1.82) 1.35 (1.13-1.61) 1.25 (1.04-1.51) 1.11 (1.00-1.22) ref.

aPooled estimates from multiple imputations. Hazard ratios calculated for the medians of testosterone within each sample quintile (Q1-Q5), relative to the median for Q5. 
Quintile boundaries were Q1/2 8.93 nmol/L (257 ng/dL), Q2/3 10.76 nmol/L (310 ng/dL), Q3/4 12.50 nmol/L (360 ng/dL), and Q4/5 14.78 nmol/L (426 ng/dL). 
Model 1 included terms for testosterone, age, and time of blood sampling, with UK region modeled as a stratification factor (see Methods). 
Model 2 included model 1 terms + ethnicity (White vs not White), alcohol consumption, smoking status, body mass index, use of glucocorticoids, fracture in past 5 years, 
renal impairment, secondary osteoporosis, and thyroid disease. 
Model 3 included model 2 terms + educational attainment; living with partner; diet (red meat: high vs low vs none); physical activity; waist circumference; chronic 
obstructive pulmonary disease; and use of anticonvulsants, opioids, and vitamin D supplements, with the number of medications included as a proxy for overall comorbidity 
status. 
Model 4 included model 3 terms + SHBG. 
Abbreviation: T, testosterone.

The Journal of Clinical Endocrinology & Metabolism, 2025, Vol. 110, No. 7                                                                                            1967
D

ow
nloaded from

 https://academ
ic.oup.com

/jcem
/article/110/7/1964/7814739 by Australian C

atholic U
niversity user on 16 August 2025



3 bone sites. By contrast, lower SHBG was strongly associated 
with a lower risk of fractures at all investigated bone sites, and 
additional adjustment for T did not alter the results. These 
findings demonstrate that circulating SHBG, rather than T, 
is a major independent biomarker of fracture risk in men.

Previous prospective studies examining the associations be
tween circulating T concentrations and incident fractures have 
yielded inconsistent results (4-13), possibly due to smaller 
sample sizes and differences in study populations. Compared 
with the largest of these studies, the present study includes 
over 30 times more fracture cases, owing to the large size and 
relatively long follow-up time of the UK Biobank (4-13). The 
large number of fracture cases enabled us to thoroughly evaluate 
possible nonlinear relationships between circulating T and inci
dent fractures at different bone sites separately. We observed 
that circulating T was associated with fractures at any bone 

site in a nonlinear manner and that this association remained 
after adjustments for known clinical risk factors for fractures 
and comorbidities. Interestingly, this nonlinear association 
was bone-site specific and observed for hip fractures but 
not forearm fractures. When comparing quintiles of T, the 
lowest hip fracture risk was observed for men in the second 
quintile, with a gradual increase of hip fracture risk at higher 
quintiles and the highest risk observed for men in quintile 5. 
A possible explanation for the relatively high risk at the 
lowest quintile could be that these men are unhealthier 
than those with higher T levels and that, despite our efforts 
to correct for multiple confounding factors, there is residual 
confounding.

Similar to the current study, a nonlinear association was ob
served for T and fracture risk in the Health In Men Study with 
the highest risk for the lowest and highest quintiles of T (13). 

D

E

F

G

H

I

A

B

C

Figure 1. Estimated association of baseline serum testosterone concentration with risk of fracture in models with or without consideration of SHBG. 
(A–C) Estimates for testosterone models not considering SHBG, model 3, adjusted for time of blood sampling; geographic region; thyroid disease; renal 
impairment; ethnicity (White vs not White); participant age; other FRAX-related clinical risk factors: body mass index, fracture in past 5 years, smoking 
status, glucocorticoid use, secondary osteoporosis, and alcohol consumption; living with partner status; educational attainment; diet (red meat: high vs 
low vs none); physical activity; waist circumference; chronic obstructive pulmonary disease; serum vitamin D concentration; opioids; anticonvulsants; 
vitamin D supplementation; and total number of medications (proxy for overall comorbidity status). (D–I) Estimates for testosterone models considering 
SHBG either by (D–F) adjusting for SHBG and model 3 covariates (ie, model 4) or (G–I) using calculated free testosterone as exposure and model 3 
covariates. Shaded areas are 95% confidence intervals and the locations of hazard ratios (medians of sample quintiles, as presented in Table 1 for 
testosterone and Table 2 for calculated free testosterone) are indicated. Horizontal axes are truncated to exclude values outside of boundary knots, 
where data are sparsely distributed and trends are constrained to linearity. 
Abbreviation: FRAX, Fracture Risk Assessment Tool.

1968                                                                                            The Journal of Clinical Endocrinology & Metabolism, 2025, Vol. 110, No. 7
D

ow
nloaded from

 https://academ
ic.oup.com

/jcem
/article/110/7/1964/7814739 by Australian C

atholic U
niversity user on 16 August 2025



Thus, the present large study establishes that higher circulat
ing T per se, not considering SHBG and within the normal 
range (starting from Q2, the lowest quartile), is associated 
with higher fracture risk in middle-aged to older men. This ob
servational finding is in line with the recent unexpected finding 
from the TRAVERSE trial showing that T treatment of men, 
enhancing circulating T levels within the physiological range, 
increased the risk of fractures compared with placebo (27). 
However, the underlying mechanism for this finding is un
known and most likely not caused by reduced BMD as the 
T-Trials and the T4Bone studies showed that T treatment of 
men increased different BMD parameters and improved 
bone microarchitecture compared with placebo (23, 26). 
Future studies should determine the effect of T treatment on 
risk of falls and other factors influencing the fracture risk. 
Given the unexpected result that the fracture incidence was 
higher among men who received T than among those who re
ceived placebo in the TRAVERSE trial (27), it was recently 
speculated that T treatment may promote an active lifestyle, 
subsequently associated with a higher risk of trauma-induced 
fractures (41).

In the present study, we observed that low circulating 
SHBG was strongly associated with a low risk of fractures 
at all evaluated bone sites, and this association remained after 
adjustment for circulating T. The association between SHBG 
and fracture risk is in line with previous findings from smaller 
observational studies (4-10, 13, 14). In contrast, we recently 
observed that low SHBG was associated with an increased 
risk of myocardial infarction in men in the UK Biobank 
(42), demonstrating that high SHBG is not simply a marker 

of general poor health in these men. A role of SHBG for frac
ture risk is supported by recent 2-sample Mendelian random
ization (MR) studies showing that higher genetically predicted 
circulating SHBG is causally associated with higher risk of 
fractures (43, 44) in sex-combined analyses. However, there 
is no sex-stratified MR study showing a causal effect of circu
lating SHBG on fracture risk in men. SHBG is mainly known 
to bind sex hormones and thereby influence their transport 
from the circulation into peripheral sex steroid target tissues, 
a concept supported by affected intratissue sex steroid levels in 
SHBG transgenic mice (45). Part of the substantial role of high 
SHBG on fracture risk may be mediated not only by modulat
ing the effect of testosterone but also of estradiol, a known 
regulator of BMD and fracture risk in men, as demonstrated 
using MR (46, 47). However, the possibility that SHBG may 
have effects on its own cannot be excluded. Some studies 
have suggested that SHBG may bind to a receptor, and follow
ing steroid binding to SHBG, the receptor activates adenylate 
cyclase; however, the identity of the receptor is not known 
(48). Further studies are warranted to determine the mechan
ism for SHBG to affect fracture risk.

When considering SHBG in the models evaluating the as
sociation between circulating T and fracture risk, either by 
adjusting for SHBG or using SHBG in the calculations of 
cFT, the associations between T and fracture risk changed 
direction and were strengthened. In models considering 
SHBG, circulating T was linearly, but inversely, associated 
with fracture risk, contrasting with the direct linear associa
tions of SHBG with incident fractures. These results suggest 
that the observed associations of T with fracture risk were 

Table 2. Hazard ratios of different types of incident fractures by quintiles of cFT (pmol/L)a

Model Q1 Q2 Q3 Q4 Q5

Median cFT (pmol/L) 148.9 185.6 213.6 245.4 299.9
Median cFT (pg/mL) 42.9 53.5 61.6 70.8 86.5

n = 37 925 n = 37 920 n = 37 906 n = 37 922 n = 37 912
Any fracture: 10,123 events

2591 events 2135 events 1867 events 1848 events 1682 events
Model 1 1.38 (1.30-1.46) 1.16 (1.10-1.24) 1.11 (1.04-1.18) 1.04 (1.00-1.08) ref.
Model 2 1.31 (1.24-1.39) 1.14 (1.07-1.21) 1.09 (1.02-1.16) 1.03 (0.99-1.07) ref.
Model 3 1.27 (1.20-1.35) 1.13 (1.07-1.20) 1.09 (1.02-1.17) 1.03 (1.00-1.07) ref.

Hip fracture: 1,536 events
524 events 342 events 265 events 237 events 168 events

Model 1 1.62 (1.38-1.90) 1.25 (1.06-1.48) 1.11 (0.92-1.34) 1.05 (0.94-1.17) ref.
Model 2 1.51 (1.29-1.77) 1.21 (1.02-1.43) 1.08 (0.89-1.31) 1.03 (0.93-1.15) ref.
Model 3 1.41 (1.20-1.66) 1.19 (1.00-1.40) 1.07 (0.88-1.29) 1.03 (0.92-1.15) ref.

Forearm fracture: 1,249 events
304 events 248 events 234 events 236 events 227 events

Model 1 1.46 (1.24-1.72) 1.20 (1.02-1.41) 1.12 (0.92-1.35) 1.07 (0.97-1.19) ref.
Model 2 1.42 (1.21-1.68) 1.18 (1.00-1.40) 1.10 (0.91-1.33) 1.06 (0.96-1.18) ref.
Model 3 1.40 (1.18-1.65) 1.18 (1.00-1.39) 1.10 (0.91-1.33) 1.06 (0.96-1.18) ref.

aPooled estimates from multiple imputation. Hazard ratios calculated for the medians of cFT within each sample quintile (Q1-Q5), relative to the median for Q5. 
Quintile boundaries were Q1/2 169.7 pmol/L, Q2/3 199.6 pmol/L, Q3/4 228.4 pmol/L, Q4/5 266.5 pmol/L. 
Model 1 included terms for cFT, age, and time of blood sampling, with UK region modeled as a stratification factor (see Methods). 
Model 2 included model 1 terms + ethnicity (White vs not White), alcohol consumption, smoking status, body mass index, use of glucocorticoids, fracture in past 5 years, 
renal impairment, secondary osteoporosis, and thyroid disease. 
Model 3 included model 2 terms + educational attainment; living with partner; diet (red meat: high vs low vs none); physical activity; waist circumference; chronic 
obstructive pulmonary disease; and use of anticonvulsants, opioids, and vitamin D supplements, with the number of medications included as a proxy for overall comorbidity 
status. 
Abbreviation: cFT, tree testosterone.
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heavily influenced or driven by SHBG. In contrast, the strong 
associations between SHBG and fracture risk were largely 
unaffected by adjustment for T. Based on the findings in 
the present study, we propose that not only total T but also 
SHBG concentrations should be assessed when examining 
the relationship of sex steroids and bone health in men. 
The additional value of the SHBG measurement may be 

due to SHBG’s capacity to modulate the effect of not only cir
culating T (partly captured by cFT) but also estradiol on 
bone health. Taken together, these findings suggest that 
SHBG, rather than T, is a strong independent biomarker of 
fracture risk in men. This was further illustrated by substan
tially higher absolute 10-year risk for hip fractures for men 
in quintile 5 compared with men in quintile 1 of SHBG, 

D

E

F

B

C

A

Figure 2. Estimated association of baseline serum SHBG concentration with risk of fracture. (A–C) Estimates for SHBG using model 3, adjusted for 
time of blood sampling; geographic region; thyroid disease; renal impairment; ethnicity (White vs not White); participant age; other FRAX-related clinical 
risk factors: body mass index, fracture in past five years, smoking status, glucocorticoid use, secondary osteoporosis, and alcohol consumption; living 
with partner status; educational attainment; diet (red meat: high vs low vs none); physical activity; waist circumference; chronic obstructive pulmonary 
disease; serum vitamin D concentration; opioids; anticonvulsants; vitamin D supplementation; and total number of medications (proxy for overall 
comorbidity status). (D–F) Estimates for SHBG models adjusting for testosterone and model 3 covariates (ie, model 4). Shaded areas are 95% 
confidence intervals and the locations of hazard ratios (medians of sample quintiles, as presented in Table 3) are indicated. Horizontal axes are truncated 
to exclude values outside of boundary knots, where data are sparsely distributed and trends are constrained to linearity. 
Abbreviation: FRAX, Fracture Risk Assessment Tool.
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suggesting that high levels of SHBG should be considered as a 
clinical risk factor for fractures in men.

The current study has several strengths, including the large 
size, long follow-up, detailed characterization of the partici
pants, and high number of fractures of the UK Biobank 
that allowed us to analyze fractures at different bone sites 
separately, determine possible nonlinear associations, and 
adjust for many relevant comorbidities/covariates. In add
ition, we imputed for missing information that enabled us 
to adjust for multiple comorbidities/covariates without redu
cing the number of participants included in the different 
models used.

The current study also has several limitations. Although we 
used many covariates, we cannot exclude residual confound
ing due to missing covariates. As it is well known that sex ste
roids are associated with BMD and falls in men (46, 49), it is a 
limitation of the present study that additional models also ad
justing for BMD and falls were not added. Another limitation 
is that the study is purely observational. Future sex-stratified 
MR studies would be important to determine the possible 
causal role for SHBG and T on fracture risk in men. In the 
UK Biobank, sex steroids were quantified using immunoas
says instead of state-of-the art mass spectrometry. Although 
these methodologies correlate rather well, the absolute level 
of T differs (50); we, therefore, presented data as continuous 
variables and in quintiles to avoid using specific thresholds 
of T obtained by immunoassay. It should be emphasized 

that it is a limitation of the present study that valid estradiol 
measurements were not available in the UK Biobank, with 
92% of the estradiol levels given below the detection limit 
of the immunoassay (51). In addition, serum dihydrotestoster
one was not analyzed in the UK Biobank cohort. Considering 
the important links between estradiol and bone health in men 
(14, 46, 47), as well as the capacity of SHBG to also bind to 
estradiol, it is likely that the association between high circulat
ing SHBG and increased fracture risk may involve reduced 
bioavailability of not only T but also estradiol. Further large- 
scale studies with reliable estradiol measurements are required 
to determine to what extent the association between SHBG 
and fracture risk is mediated via estradiol bioavailability. 
Generally, only unbound steroids are considered to convey 
steroid actions, but since free T was not directly measured, 
we calculated the free levels of T using the commonly used 
method by Vermeulen (15), and there is controversy about 
the accuracy of those estimates. An additional limitation is 
the lack of a certified standard or quality control for the calcu
lated free testosterone. Since the UK Biobank consists of main
ly European participants who have a relatively narrow age 
range (37-73 years old), the results may not be representative 
for non-European populations or for populations of elderly 
individuals with the highest risk of fracture. In addition, the 
response rate for the UK Biobank was low, and participants 
in the UK Biobank may be healthier than the general popula
tion of the United Kingdom (52).

Table 3. Hazard ratios of different types of incident fractures by quintiles of SHBG (nmol/L)a

Model Q1 Q2 Q3 Q4 Q5

Median SHBG (nmol/L) 21.2 29.7 36.9 45.4 60.7
n = 38 161 n = 38 116 n = 38 091 n = 38 136 n = 38 103

Any fracture: 10,193 events
1656 events 1783 events 1901 events 2099 events 2754 events

Models without T Model 1 0.69 (0.65-0.73) 0.73 (0.69-0.77) 0.76 (0.71-0.81) 0.82 (0.79-0.85) ref.
Model 2 0.72 (0.68-0.77) 0.77 (0.72-0.81) 0.79 (0.74-0.84) 0.85 (0.82-0.88) ref.
Model 3 0.71 (0.67-0.75) 0.77 (0.72-0.81) 0.79 (0.74-0.84) 0.85 (0.82-0.89) ref.

Model with T Model 4 0.62 (0.58-0.67) 0.70 (0.66-0.75) 0.74 (0.69-0.79) 0.83 (0.79-0.86) ref.
Hip fracture: 1,546 events

144 events 212 events 268 events 338 events 584 events
Models without T Model 1 0.48 (0.41-0.56) 0.52 (0.45-0.60) 0.62 (0.53-0.71) 0.73 (0.67-0.80) ref.

Model 2 0.61 (0.51-0.72) 0.64 (0.55-0.74) 0.73 (0.63-0.85) 0.82 (0.75-0.90) ref.
Model 3 0.55 (0.47-0.65) 0.60 (0.51-0.70) 0.70 (0.60-0.81) 0.81 (0.74-0.89) ref.

Models with T Model 4 0.46 (0.38-0.56) 0.53 (0.45-0.63) 0.64 (0.54-0.75) 0.77 (0.70-0.85) ref.
Forearm fracture: 1,255 events

219 events 220 events 236 events 239 events 341 events
Models without T Model 1 0.62 (0.53-0.72) 0.68 (0.58-0.80) 0.67 (0.56-0.80) 0.77 (0.69-0.85) ref.

Model 2 0.63 (0.53-0.75) 0.70 (0.59-0.82) 0.68 (0.57-0.82) 0.78 (0.70-0.87) ref.
Model 3 0.62 (0.52-0.74) 0.70 (0.59-0.82) 0.68 (0.57-0.81) 0.78 (0.71-0.87) ref.

Models with T Model 4 0.49 (0.40-0.61) 0.59 (0.49-0.71) 0.60 (0.49-0.73) 0.74 (0.66-0.82) ref.

aPooled estimates from multiple imputation. Hazard ratios calculated for the medians of SHBG within each sample quintile (Q1-Q5), relative to the median for Q5. 
Quintile boundaries were Q1/2 25.9 nmol/L, Q2/3 33.3 nmol/L, Q3/4 40.8 nmol/L, Q4/5 51.3 nmol/L. 
Model 1 included terms for SHBG, age, and time of blood sampling, with UK region modeled as a stratification factor (see Methods). 
Model 2 included model 1 terms + ethnicity (White vs not White), alcohol consumption, smoking status, body mass index, use of glucocorticoids, fracture in past 5 years, 
renal impairment, secondary osteoporosis, and thyroid disease. 
Model 3 included model 2 terms + educational attainment; living with partner; diet (red meat: high vs low vs none); physical activity; waist circumference; chronic 
obstructive pulmonary disease; and use of anticonvulsants, opioids, and vitamin D supplements, with the number of medications included as a proxy for overall comorbidity 
status. 
Model 4 included model 3 terms + T. 
Abbreviation: T, testosterone.
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In conclusion, our results show that low circulating SHBG 
is strongly associated with a low risk of fractures in men. 
The associations for circulating T with fracture risk were 
weaker, nonlinear, and observed for hip but not forearm frac
tures. Importantly, the associations of T with fracture risk 
changed direction and were strengthened in models consider
ing SHBG (via SHBG adjustment or use of cFT), whereas the 
associations of SHBG were robust to additional adjustment 
for T. These findings demonstrate that circulating SHBG, ra
ther than T, is a major independent biomarker of fracture 
risk in men. Consequently, not only total T but also SHBG 
concentrations should be assessed when examining the relation
ship of endogenous T concentrations with health outcomes 
influenced by androgen-sensitive tissues in middle-aged to 
older men.
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